Year One Maths Medium Term Plan: Autumn Term

Number: Place Value (within 10)

NC objectives:

- Count to ten, forwards and backwards, beginning with 0 or 1 , or from any given number.
-Count, read and write numbers to 10 in numerals and words.
-Given a number, identify one more or one less.
-Identify and represent numbers using objects and pictorial representations including the number line, and use the language of: equal to, more than, less than (fewer), most, least.

| Week | Small step | Key Questions | Assessment |
| :--- | :--- | :--- | :--- | :--- |
| | Sort objects | To sort groups in different ways
 To explain how groups have been sorted
 Key Questions:
 Line up the objects. Is it easier to count now? Why?
 What does one represent?
 What number will we say first? Why?
 How many are there in total?
 When would we count 0?
 What does zero look like?
 Can you show me zero with your fingers? | Children need to sort groups by characteristics before
 they count. Children should be encouraged to sort
 objects into groups in a variety of ways. For example,
 sorting a group of children into girls and boys or
 sorting counters by colour. Children should be
 encouraged to line sorted objects up to link to the
 early representations of bar models. |
| | Count objects | To count a set of objects accurately to find a total
 To understand what zero means
 Key Questions:
 How can the 5 frame help you?
 Where you have written the 3, can you write the word
 too? | Once objects are sorted, children begin to count from
 1 to 10 to work out how many there are. It is
 important that they count one object at a time and
 that they understand the last number they count is
 the total amount. Children should be encouraged to
 place the objects in a line to improve accuracy when |

	How many ways can you draw 3? Do we always have to use counters to show an amount? What can we use to represent the \qquad ? What does each \qquad represent? How many different ways can we represent \qquad ?	counting. They should also be exposed to what zero looks like.	
Represent objects	To understand that one object can be represented by another To represent numbers to 10 in different ways Key Questions: How can our counting skills help us complete a number track? Do we always have to count from 0 or 1? Can anything in our classroom help you with the words? (on a number line/working wall ensure words are matched with the numeral) Are the numbers getting bigger or smaller? What comes next? Can you use the resources/images to help you count?	Children develop counting to continue a number sequence forwards. Problems should be presented in a variety of ways e.g. numerals, words and images. Children should be able to find consecutive and nonconsecutive missing numbers in sequences. When counting a set of objects, children need to be able to visualise what zero looks like and know that this comes before one.	
Count, read and write forwards from any number 0 to 10 Count, read and writing backwards from any number 0 to 10	To Count to ten, forwards, beginning with 0 or 1 , or from any given number To find the missing number in a number sequence Key Questions: How can we use our counting skills? Do we always have to start at 10 when counting backwards? Will all the boxes have dots in? Are the numbers getting bigger or smaller? What comes before? Can you use the manipulatives/images to help you count?	Children develop counting to continue a number sequence backwards. Problems should be presented in a variety of ways, e.g. numerals, words and images. Children should continue sequences, and also find consecutive and non-consecutive missing numbers in sequences.	
Count one more	To know which number is one more when given a number to 10. To say which number is one more than any given number to 20. Key Questions:	Once children are confident placing numbers on a track, the language of one more can be introduced. Children need to know that one more is the number after and they should use their counting skills or a number track to help them. The use of a dice and	

		How can counting help us with finding 1more? Where can one more than be found on a number track? What does one more mean? Will the number get bigger or smaller? Why? How can we show one more? Do we need to count from O every time we find one more?	dominoes should be used to reinforce subitising skills.	
	Count one less	To know which number is one less when given a number to 10. To say which number is one less than any given number to 20. Key Questions: How can counting help us with finding 1 less? Where can 1 less than What does one less mean? Will the number get bigger or smaller? Why? How can we show one less?	Children should relate one less to one more and understand that it is the opposite. It should be made clear that 1 less is the number before the starting number. The use of dice and dominoes should be used to reinforce subitising skills.	
	One to one correspondence to start to compare groups	To match one object to another and say if there is 'too many', 'not enough' or the 'right amount'. To explain how you know and prove your answer using pictorial representation. Key Questions: How can we show we've matched the objects/images? What does match mean? Are there enough objects/images to match them all up? Are there any left over? Why has that happened?	Children match one object with another. Children should be exposed to situations where there are too many, not enough or just the right amount. Children do not need to know the exact difference between the groups.	To use the language of: equal to, more than, less than (fewer), most, least. To explain and use this language correctly when comparing. Key Questions: Can you compare the same objects using the word 'fewer' and then using the word 'more'? ls there more than one answer?
Compare groups using language such as equal, more/greater, less/fewer	Children use the language 'equal to', 'more', 'less', greater than', 'fewer' and 'less than' to compare groups of objects. Children do not need to know the difference between the groups, just that one group is greater or less than another or that the groups are equal to each other.			

	Introduce = , > and < symbols	How many answers can you find? What do you notice about the numbers/amounts less/less than/fewer? How can you tell which has the least/most? What does more/greater mean? What does less/fewer mean? What does equal to mean? - To understand the symbols which show less than, equal to and greater than. -To use these symbols correctly when comparing two objects or numbers. Key Questions: Is there more than one answer? How can you check? Can you show the sentence in a different way? Which symbol shows greater than? Which symbol shows less than? Which symbol shows equal to? Is \qquad greater than, less than or equal to \qquad ? How can we show that using a written statement?	Inequality symbols are not introduced in the National Curriculum until Year 2. However, it is a good opportunity to introduce them when working with smaller numbers and concrete materials.	
	Compare number	\bullet To use the correct symbol when comparing 2 numbers -To choose an efficient method to compare numbers Key Questions: What happens to the sign when you swap the numbers around? Will zero always be the smallest? What strategies did you use? Which number is the largest? How do you know? Which number is the smallest? How do you know? Which symbol represents \qquad ? How can you describe these two numbers?	Children use previous learning to choose an efficient method to compare numbers. They will use their understanding of a numbers worth/value to compare them. Children may draw on prior knowledge such as counting, sorting, grouping etc. to help them compare. Children should be given access to a variety of concrete resources/images to aid them.	
	Order groups of objects	To compare and order three groups of objects To explain how groups have been ordered using 'greatest' and 'smallest'. Key Questions: How do you know group \qquad is the greatest?	Children should order three groups of objects. They should be exposed to different methods for comparing such as comparing two groups initially, and lining groups up. Children should be introduced to the vocabulary 'greatest' and 'smallest' and begin to use it	

Addition and Subtraction (within 10)

NC objectives:

- Represent and use number bonds and related subtraction facts within 10
-Read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.
\bullet Add and subtract one digit numbers to 10 , including zero.

	sentences? If two of the numbers in the part-whole model are the same, can we still write four addition sentences? Prove it. Can we make another addition calculation using the same 3 numbers? Can the parts change place? Can the whole change place? Why?		
Number bonds within 10	To represent and find number bonds facts within 10 To record all the different ways of partitioning numbers up to 10. Key Questions: What is the whole? What are the parts? Does the whole always stay the same? How can we partition the whole? Do the parts stay the same or change? If 8 is the whole, what could the parts be? What number sentence would represent the parts we have partitioned the whole into?	Children combine their knowledge of the part-whole model and addition facts to explore number bonds within 10 . Starting with the whole, children break numbers into parts and explore how many different ways a number can be partitioned. E.g. 5=3 $+25=4+1$	
Systematic methods for number bonds within 10	To understand how to be systematic when partitioning. To find all addition facts for a number using a systematic approach. Key Questions: What two numbers can be added to make \qquad ? Write the number sentence to represent this number bond. Are there any more ways to make this number bond? Can you see a pattern in the numbers? What is happening to the parts each time? Does the amount of number bonds change as the number gets bigger or smaller?	Children apply their partitioning skills to work systematically starting with the whole. E.g. $7+0=76+1$ $=75+2=74+3=7$ This is supported through the use of equipment, for example, cubes, bead strings, double sided counters	
Compare number	To compare numbers and number sentences	Children use their knowledge of place value and	

	How many will you start with? Why? How many will you take away? Why? What is the same and what is different about the calculations?		
Subtraction: Finding a part, breaking apart	To subtract a part from the whole number To understand subtraction by partitioning What is the whole? What are the parts? If \qquad is the whole, and \qquad is a part, what is the other part? How many ways can I partition 8 into parts? Use two hoops and 8 counters to support.	Once children understand the concept of taking away, the subtraction symbol can be introduced. It is still important for children to create stories about the calculation so they can deepen their understanding of subtraction. Children continue using the subtraction symbol. Building on their understanding of finding a part, they are introduced to subtraction by partitioning. Children break apart a number into two parts using concrete and pictorial representations to support.	
Fact families - 8 facts	To understand the relationship between addition and subtraction To write four subtraction sentences using same 3 numbers. How many counters were there at first? How many were taken away? How many are left? Can you draw an image to show this? How many will you start with? Why? How many will you take away? Why? What is the same and what is different about the calculations?	Children will link addition and subtraction facts for the first time. It is important that children are able to show and understand this relationship. They should continue to be exposed to the use of zero. Children can struggle with getting four calculations for subtraction e.g. 7-9-2 and 2-9-7 and should use concrete and pictorial representations to aid their understanding of this	
Count back	To understand how to count back for subtraction To solve subtraction calculations by counting backwards. What number comes before 6? What number should we start on? Which calculations do you know match straight away?	Children count backwards to subtract. It is an important step to help children work in the abstract. Common misconceptions could be that the children include their starting number when counting, e.g. 5 $-3 ; 5,4,3-$ therefore giving the wrong answer. It is vital to model how to count backwards by 'putting the start number in our head and counting backwards'.	

	objects	How can you work out which is the largest/smallest? Can you just look at two groups first? Why? What is happening to the numbers when we order from largest to smallest? Can you think of an amount less than the smallest group? How is your drawing different to your partners? Can you describe the order using largest and smallest? What would happen to your description if we changed the numbers around?	the same skills to numbers up to 20. It is important children recap ordering numbers below 10 Children order three groups of objects in this step to support them in ordering 3 abstract numbers in the following step. It is important to share different methods so children are continually exposed to more efficient ways.			
	Order numbers	How have you been asked to order the numbers? Which is the largest? How do you know? Which is the smallest? How do you know? Is it easier to order groups of objects or numbers? Why? If you have numbers, can you still use objects? Does this help? Why? What was your strategy for comparing numbers? Could you order the numbers in the opposite way? Does any number stay in the same place when we do this? Why?	Children now order abstract digits from 0-20. They can choose to represent these with concrete materials or draw them pictorially to help them order. Children need to apply their knowledge of tens and ones to help them work within the abstract. For example, when comparing 8 and 15 only one number has a ten therefore 15 must be greater.			

