Year 2 Maths Autumn medium Term plan

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Numb	er: Place	e Value	Nur	nber: Ad	dition and	J Subtrac	tion	Measu Mo	rement: oney	Num <u>Multipl</u> and D	ıber: lication ivision
					Numbe	r: Place Value						
 Read and w Recognise tl Identify, rep Compare an Use place value 	NC Objectives: •Read and write numbers to at least 100 in numerals and in words. •Recognise the place value of each digit in a two digit number (tens, ones) •Identify, represent and estimate numbers using different representations including the number line. •Compare and order numbers from 0 up to 100; use <, > and = signs. •Use place value and number facts to solve problems.											
•Count in ste	eps of 2, 3 and Small sten	5 from 0, and	d in tens from a	any number, f	orward and b	ackward.	Note	s and Guidan		Assessment		
	Count object and read ar numbers in numerals ar	cts to 100 nd write nd words	Key Question How can you What is one r Which is the Which numb Which numb How are 17 a	is: count the ca more/one les largest numb er is tricky to ers sound sir nd 70 differe	ars? Do you l ss? per? o write in wo nilar? ent? Can you	nave a strate rds? I show me?	gy? Year 1 able t both r Proble in a va nume Variat childr with r are no	ild on skills lea children nee o count object numerals and v ems should be ariety of ways rals, words an cion should cha en by providin nissing numbe on-consecutive	rned in d to be s to 100 in words. presented e.g. d images. allenge g them rs which			
	Represent r to 100	numbers	How have the help you cou Which part o Which resour numbers? Which is quic	e beads beer nt? f the resourc ce do you pr kest?	n grouped? F e represent: refer to use f	low does this s tens/ones? for larger	s Child repre using mate Child to sta	ren need to b sent number a range of co rials. ren should al ste how a nur	be able to s to 100 oncrete so be able mber is			

		Which would take a long time?	made up. For example, they	
			can express 42 as 4 tens and	
			2 ones or as 42 ones	
Ter	ns and ones with	Which part do we know? How can we use the whole	Children partition numbers	
	art whole model	and part to work out the missing part?	and should have an	
a p		Can you use concrete resources /draw something to	understanding of what each	
		haln you partition?	digit represents	
		How can you rearrange the counters to help you count	It is important that children	
		the lomon and strawberry supsakes?	can partition numbers in a	
		the lemon and strawberry cupcakes!	variaty of ways, not just as	
			tone and anon. For every lo	
			tens and ones. For example,	
			So is made up of 5 tens and	
			8 ones of 4 tens and 18	
			ones, or 20 tens and 38	
			ones, etc.	
Ter	ns and ones using	What clues are there in the calculations?	Children continue to use a	
ado	dition	Can we look at the tens number or the ones number	part-whole model to explore	
		to help us?	how tens and ones can be	
		What number completes the part-whole model?	partitioned and recombined	
		What is the same and different about the	to make a total.	
		calculations?	This small step will focus on	
		What are the key bits of information?	using the addition symbol to	
		Can you draw a diagram to help you?	express numbers to 100. For	
			example, 73 can be written	
			as 70 +3 =73	
Use	e a place value	How many tens are there?	Children should formally	
cha	art	How many ones are there?	present their work in the	
		What is different about using Base 10 to using place	correct place value columns	
		value counters?	to aid understanding of	
		Can you write any other number sentences about the	place value.	
		place value chart?	It is important for children	
			to use concrete, pictorial	
			and abstract	

			representations in their	
			place value chart.	
Co	ompare objects	How can you arrange the objects to make them easy	Comparing objects is	
		to compare?	introduced once children	
		Do groups of ten help you count? Why?	have a secure understanding	
		Do groups of ten help you compare? Why?	of numbers in a place value	
			chart.	
			Children are expected to	
			compare a variety of objects	
			using the vocabulary 'more	
			than', 'less than' and 'equal	
			to' and the symbols $<$, $>$, $=$.	
Co	ompare numbers	Can you prove your answers using concrete	Children compare numbers	
		resources?	using the language greater	
		Can you prove your answers by drawing a diagram?	than, less than, more than,	
		Is there more than one answer?	fewer, most, least and equal	
		Do you need to work the number sentences out to	to.	
		decide which is greater?	They are able to use the	
			symbols <, >and =to write	
			number	
			sentences.	
			Children should have access	
			to concrete resources to	
			help them justify their	
			answers.	

Order objects and	How does the number line help you order the	Children order numbers and
numbers	numbers?	objects from smallest to
	How does Base 10 prove that your order is correct?	greatest or greatest to
		smallest.
		They should be encouraged
		to use concrete or pictorial
		representations to prove or
		check their answers.
		Children use the vocabulary
		'smallest' and 'greatest' and
		may also use the <or< th=""></or<>
		>symbols to show the order
		of their numbers.
Count in 2s, 5s and	What do you notice? Are the numbers getting larger	Children count forwards and
10s	or smaller?	backwards in 2s, 5s and 10s.
	Are the numbers getting bigger or smaller each time?	It is important that children
	By how many?	do not always start from
	Can you spot a pattern?	zero, however they should
	Why is it the odd one out? Can you correct the	start on a multiple of 2 or 5
	mistake?	when counting in 2s and 5s
		but can start from any
		number when counting in
		10s. For example when
		counting in 2s they should
		not start at 3.
		Encourage children to look
		for patterns as they count.
Count in 3s	What do you notice?	Children count forwards and
	Are the numbers getting larger or smaller?	backwards in 3s from any
	Can you spot a pattern?	multiple of 3
		Encourage children to look
		for patterns as they count
		and use resources such as a

1				
			number track, a counting	
			stick and concrete	
			representations.	
		Addition and Subtraction:		
NC Objecti	<mark>ves:</mark>			
•Recall and	d use addition and subti	raction facts to 20 fluently, and derive and use related fa	cts up to 100.	
•Add and s	subtract numbers using	concrete objects, pictorial representations, and mentally	γ, including: a two-digit numbe	r and ones; a two-digit
number an	d tens; two two-digit n	umbers; adding three one-digit numbers.		
•Show that	t the addition of two nu	mbers can be done in any order (commutative) and sub	traction of one number from ar	other cannot.
•Solve pro	blems with addition and	d subtraction: using concrete objects and pictorial repres	entations, including those invo	lving numbers, quantities
and measu	res; applying their incre	easing knowledge of mental and written methods.		
 Recognise 	e and use the inverse re	ationship between addition and subtraction and use thi	s to check calculations and solv	e missing number problems.
	Fact families –	Can you write all associated number sentences in the	Children apply their	
	addition and	fact family?	understanding of known	
	subtraction facts to	What are the parts? What is the whole?	addition and subtraction	
	20	What does each circle represent on the part-whole	facts within 20 to identify all	
		model?	related facts.	
		Showing the link between representations, such as		
		part-whole models and bar models can support and	This will include an	
		deepen the children's understanding.	understanding of the	
			relationship between	
			addition and subtraction,	
			and knowing the purpose of	
			the equals sign, as well as	
			the addition and subtraction	
			signs.	
	Check calculations	What resources could you use to check your	It is essential that children	
		calculation?	have the opportunity to	
		Can you check it in more than one way?	discuss and share strategies	
		Why do we need to check our calculation?	for checking addition and	
		Is there another way you could represent this?	subtraction calculations.	
			Checking calculations is not	
			restricted to using the	

		inverse. Teachers should	
		discuss using concrete	
		resources, number lines and	
		estimating as part of a wide	
		range of checking strategies.	
Compare number	What other numbers make the same total?	Children should be	
sentences	Do we need to calculate the answer to work out the	encouraged to examine	
	missing symbol?	number sentences to find	
	Do you notice a pattern? What would come next?	missing values using	
		structure rather than	
		calculation.	
		Using numbers within 20 to	
		explore mathematical	
		relationships will give the	
		children confidence and	
		allow them to spot patterns	
		because they are working	
		within the context of	
		familiar numbers.	
		Children should compare	
		similar calculations using	
		greater than, less than and	
		equal to symbols.	
Related facts	What is the same? What is different?	children should have an	
	How does Base 10 help us to see the relationships	understanding of	
	between the different numbers and calculations?	calculations with	
	What do you notice about the part-whole models?	Similar digits. For example,	
	Is there a relationship between the numbers that are	2 +5 =7, so 20 +50 =70	
	represented?	This involves both addition	
		and subtraction. It is	
		important to highlight the	
		correct vocabulary and help	
		children to notice what is	

		the same and what is	
		different between	
		Numbers and calculations.	
		'Tens' and 'ones' should be	
		used to aid understanding	
		using Base 10 can also help	
		the children to see	
		relationships.	
Bonds to 100	What does the word multiple mean?	Teachers should focus at	
	What does the blue represent? What does the yellow	this stage on multiples of 10	
	represent?	up to and within 100	
	Why is it different to a normal 10 frame?	Links should be made again	
	What patterns can you see? How does this help us to	between single digit bonds	
	make up our own?	and tens bonds.	
		Using a 10 frame to	
		represent 100 would	
		be a useful resource to	
		make this link.	
Add and subtract 1s	What happens when we add 2?	Children should start seeing	
	What is the link between adding 1 and adding 2?	the pattern when we add	
	What about if we want to add 3?	and subtract 1 and	
	How can a bead string help when we are adding 1, 2, 3	comment upon what	
	etc.?	happens.	
	Where will be the best place to start on each number	This is the step before	
	track? Why?	finding ten more than or ten	
		less than, as bridging	
		beyond a 10 should not	
		Be attempted yet.	
		The pattern should be	
		highlighted also by adding	
		2 (by adding another one)	
		and then adding 3.	

	10 more and 10 less	What's the same? What's different?	Teaching needs to focus on	
		What's the same: what's uncertaint:	the importance of the tens	
		White you start with 55 of 55? Why?		
		when you look at a hundred square, what do you		
		notice about the numbers that are ten more and ten	Using a 100 square, explore	
		less than 27?	with the children what	
		Which direction will your finger move on a hundred	happens to the numbers in	
		square if you are finding ten more/ten less?	the columns.	
			Draw attention to the idea	
			that the tens digit changes	
			While the ones digit remains	
			the same.	
			Children will need to see	
			how the number changes	
			with concrete materials	
			before moving onto more	
			abstract ideas.	
_	Add or subtract tens	What is the number sentence that will help us to find	Children should make	
		the first missing number in the number track?	use of place value to add	
		What is the same/different about the next number	and subtract 10s from a	
		sentence?	given number within	
		Why is there a blank ones box?	100	
		Which column changes?	The key teaching point again	
		Which column stays the same?	is the importance of the	
			tens digit within the given	
			numbers, and children	
			should be encouraged	
			to see the relationship	
			For example $64 \pm 20 = 84$	
	Add 2-digits and 1-	Using Base 10, can you partition your numbers?	Before crossing the 10 with	
	digit	Can we exchange 10 ones for one ten?	addition children need to	
	uigit	How many ones do we have? How many tons do we	have a strong understanding	
		have?	of place value. The idea that	
		Can you draw the Base 10 and show the addition	ton ones are the same	
		Can you draw the Base 10 and show the addition	ten ones are the same	

	pictorially?	as one ten is essential here.	
		They need to be able to	
		count to 20 and need to be	
		able to partition two-digit	
		numbers in order to add	
		them. They need to	
		understand the difference	
		between one-digit and	
		two-digit numbers and line	
		them up in columns. In	
		order to progress to using	
		the number line more	
		efficiently, children need to	
		be secure in their number	
		bonds.	
Subtract 1-digit from	Are we counting backwards or forwards on the	Just as with addition.	
2-digits	number line?	children need to have a	
	Have we got enough ones to subtract? Can we	strong understanding	
	exchange a ten for ten ones?	of place value	
	How can we show the takeaway? Can we cross out	for subtraction. Children	
	The cubes?	need to be able to count	
		to 20 and need to be able	
		to partition two-digit	
		numbers in order to	
		subtract from them. They	
		need to understand	
		the difference between one	
		-digit and two-digit numbers	
		and line them up in	
		columns.	
		In order to progress to	
		using the number line more	
		efficiently, children need to	

		be secure in their number	
		bonds.	
Add 2-digit Numbers	Can you partition the number into tens and ones?	This step is an important	
	Can you count the ones? Can you count the tens?	pre-requisite before	
	Can you show your addition by drawing the Base	children add two-digit	
	10 to help? How could you represent the problem?	numbers with an exchange.	
		Focus on the language of	
		tens and ones and look	
		at different methods to add	
		the numbers including the	
		column method.	
		It is important that teachers	
		always show the children to	
		start with the ones when	
		adding using the column	
		method.	
Add 2-digit Numbers	Can you represent the ones and tens using	Children use Base10 and	
(2)	Base 10?	Partitioning to add	
	What is the value of the digits?	together 2-digit numbers	
	How many ones do we have altogether?	including an exchange. They	
	How many tens do we have altogether?	could be encouraged to	
	Can we exchange ten ones for one ten?	draw the Base 10 alongside	
	What is the sum of the numbers?	recording any formal	
	What is the total?	column method.	
	How many have we Got altogether?	They have already seen	
		what happens when there	
		are more than 10 ones and	
		should be confident in	
		exchanging 10 ones for One	
		10.	
Subtract with 2-	Do we need to make both numbers in the	This step is an important	
digits	subtraction before we takeaway?	step before children start	
	Which number do we need to make? The larger	to look at subtraction	

	number or the smaller?	where they cross a tens	
	What are the numbers worth? Tens or ones?	boundary.	
	What happens if we have nothing left in a column?	Children need to use	
	Which number do we write?	concrete materials but also	
		draw images of the Base	
		10 so they can	
		independently	
		Solve problems.	
		Some children might think	
		that they need to 'build'	
		both numbers in the	
		calculation, unpicking this	
		misconception through	
		modelling and discussion	
		will help develop their	
		understanding.	
Subtract with 2-	Have we got enough ones to take away?	Children use their	
digits (2)	Can we exchange one ten for ten ones?	knowledge that one Ten is	
	How many have we got left?	The same as ten ones to	
	What is the difference between the numbers?	Exchange when crossing	
	Do we always need to subtract the ones first? Why do	A ten in subtraction .	
	we always subtract the ones first?	Continue to use concrete	
	Which method is the most efficient to find the	manipulatives (such as Base	
	difference, subtraction or counting on?	10) and pictorial	
		representations (such as	
		number lines and part-	
		whole models) to develop	
		the children's	
		understanding.	
		The skill of flexible	
		partitioning is useful here	
		when the children are	
		calculating with exchanges.	

Bonds to 100 (Tens	How many more do we need to make 100?	Here children build on their		
and Ones)	How many tens are in 100?	earlier work on number		
	If I have 35, do I need 7 tens and 5 ones to make	bonds to 100 with tens		
	100?	together with number		
	Explain why.	bonds to 10 and 20		
	Can you make the number using Base 10?	They use their new		
	Can you add more Base 10 to the number to make	knowledge of exchange to		
	100?	find number bonds to 100		
		with tens and ones.		
		Using hundred squares,		
		Base 10, bead strings etc.		
		will help the children		
		develop their		
		understanding.		
Add Three 1-digit	Can we change the order of the numbers to make the	children need to use their		
Numbers	calculation easier?	knowledge of commutativity		
	Why are we allowed to change the order of the	to find the most efficient		
	numbers?	and quick way to add the		
	Which two numbers did you add first? Why?	three one-digit numbers.		
	What if you added a different two numbers first,	They look for number bonds		
	would your answer be the same	to 10 to help them add		
		more efficiently.		
	Money:			
NC Objectives:				

•Recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value.

•Find different combinations of coins that equal the same amounts of money.

•Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.

Count Money - Pounds	Do the notes have a greater value than the coins? Which is the hardest to count? Which is the easiest? Why? What do you notice about the amounts? Does it matter which side the equals sign is? Count Money Pounds Can you find the total in a different way?	Children will continue counting but this time it will be in pounds, not pence. The £ symbol will be introduced. Children must be aware that both coins and notes are used to represent amounts in pounds.	
		f5, f10 and f20s. In this year group, children work within 100, therefore They will not count in £50s.	
Count Money – Notes & Coins	How did you work out the total amount of money? What strategy did you use to count the money when there is pounds and pence? Explain what to do when the pounds and pence are mixed up.	In this step, children will build on counting by bringing pounds and pence together. Decimal notation is not used until KS2 therefore children will write the total using 'and' e.g. £5 and 30 p rather than £5.30 Children will not count cross £1. They will count the pounds and pence separately before putting them together.	

Select Money Select Money Make the Same Amount	How do you know you have made 56 p? Is your answer the same as your partner? Can you find any other ways to make this amount? Does it matter if you say pence or pounds first? Does this change the total? Can you show this amount in a different way? Can the same amount be made using different coins? How did you compare the amounts? How is your way different to a partner? Can you swap a coin/note for others and still make the same amount? What is the smallest amount of coins you can use to make?	Children select coins to make an amount, from a set of coins given to them. They will use these practically, draw them and write the abstract amounts. They will continue to use both pounds and pence to embed previous learning. Children are continuing to work on recognising money by selecting the correct coins or notes from a wide range. Children explore The different ways of making the same amount. As before, they will not count pence over into pounds. Examples need to be modelled where pounds and pence are together but children need to continue to be encouraged to count the pounds and pence separately	
Compare Money	What do you notice about the amounts you have compared? What's the same? What's different? How do you know who has the most, when they both have 64? Can you add a value that will go in between the	Use <, >or =to compare the amounts. Children compare two different values in either pounds or pence.	

	greatest and the least?	Children will see examples
		with both pounds and
		pence, but they will only
		focus on one of
		these -the other must be
		the same e.g. £3 and
		10 p >f2 and 10 p where 10
		p is the constant.
		Children recap comparing
		vocabulary such as
		greater/less than and use
		the inequality symbols.
Find the Total	How did you find the missing amounts? Share your	Children will build on their
	strategies with a friend.	knowledge of addition to
	Was your method different to a friend?	add money including:
	What is the most efficient method? Why?	•2-digit and 2-digit
	Can you write a worded question for a friend?	•2-digit and ones
	What was the greatest amount you found?	•2-digit and tens
		•3-single digits
		Children will be encouraged
		to use different methods to
		add the amounts of money,
		such as count on,
		partitioning and regrouping.
Find the Differen	ce Which costs more? How do you know?	Children expand their
	How can you work out how much more?	knowledge of addition and
	What's the difference?	subtraction strategies by
	How much less?/How many fewer?	specifically finding the
	What method did you use to work this out?	difference between two
		amounts.
		In this step, children should
		see both counting on and
		counting back being

r	r			
			modelled to them.	
			They need to discuss which	
			is the most efficient for	
			different questions.	
Find (Change	How much does Dora have? How do you know?	Children build on their	
		Can you write a calculation to work out how much she	subtraction skills by finding	
		will have left?	change from a given	
		Why is it important to use the £ or p symbol?	amount. They need to	
		What strategy did you use to find the change?	identify amounts from the	
		Did you use concrete objects to help?	coins given, write the	
			calculations and choose	
			efficient methods.	
			In this step, children will be	
			introduced to converting £1	
			to 100 p to be able to	
			subtract from £1. This links	
			to their number bond	
			knowledge to 100.	
Two-s	step Problems	Where does the £33 go in the bar model?	Children draw together all of	
		How can you find the total?	the skills they have used in	
		Here is a one step problem. Can you think of a second	this block and consolidate	
		step?	their previous addition and	
		Can you write your own two step word problem?	subtraction learning.	
		Did you use a concrete or pictorial representation to	Children may need some	
		help you?	scaffolding to see the	
			different steps.	
			Bar modelling is really useful	
			to see the parts and wholes,	
			and supports children in	
			choosing the correct	
			calculation.	

Multiplication and Division:

NC Objectives:

•Recall and use multiplication and division facts for the 2, 5 and 10 timestables, including recognising odd and even numbers.

•Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) sign.

•Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

•Show that the multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.

ſ	Make Equal Groups	How else could you represent these in equal groups?	Children should be able to	
		How many ways can you represent this?	make equal groups to	
		How have you grouped your items?	demonstrate their	
			understanding of the word	
			'equal'.	
			With the examples provided	
			to the children, it is	
			important that they are	
			exposed to numerals and	
			words, as well as multiple	
			representations.	
4	Add Equal Groups	What do the two 3s represent?	Children begin to connect	
		Why are we using the addition symbol?	equal groups to repeated	
		How else can we show the equal groups?	addition.	
		What is the total?	At this point children have	
			added 3 one digit numbers	
			Together, therefore they	
			can add up to 3 equal	
			groups when each group is	
			any one digit number.	
			If there are more than 3	
			equal groups, the examples	
			must be limited to 2s, 5s,	

			10s and 3s.
-	The Multiplication	What does the 3 represent?	Children are introduced to
	Symbol	What does the 6 represent?	the multiplication symbol
		What does 'lots of' mean?	for the first time. They
		Does 18 =3 ×6 mean the same?	should link repeated
		How is 6 +6 +6 the same as 3 ×6? How is it different?	addition and multiplication
			together, using stem
			sentences to support their
			understanding.
			They should also be able to
			interpret mathematical
			stories and create their Own
			involving multiplication.
			The use of concrete
			resources and pictorial
			representations is still vital
			for understanding.
	Multiplication from	What does the 4 represent?	Children will use the
	Pictures	What does the 3 represent?	multiplication symbol and
		What does the 12 represent?	work out the total from
		Can you think of your own story for 3 ×4 =12?	pictures.
			They should also be able to
			interpret a multiplication
			word problem by drawing
			images to help them solve
			it.
			Coins could be used within
			this small step too.
	Use Arrays	Here are the 2 lots of 3?	Children explore arrays to
		Where are the 3 lots of 2?	see the commutativity
			of multiplication facts e.g. 5
			×2 =2 ×5

	What do you notice?	The use of the array could	
	What can we use to represent the eggs?	be used to help children	
	Can you draw an image?	calculate multiplication	
		statements.	
		The multiplication symbol	
		and language of 'lots of'	
		should be used	
		interchangeably.	
The 2 Times- Table	If 16 p is made using 2 p coins, how many coins would	Children should be	
	there be?	comfortable with the	
	How many 2s go into 16?	concept of multiplication so	
	How can the images of the 5 bicycles help you to solve	they can apply this to	
	the problems?	multiplication tables.	
		Images, as well as number	
		tracks, should be used to	
		encourage children to count	
		in twos.	
		Resources such as cubes and	
		number pieces are	
		important for children to	
		explore equal groups within	
		the 2 times-table.	
The 5 Times-Table	If there are 30 petals, how many flowers?	Children can already count	
	Can you count in 5s to 30?	in 5s from any given umber.	
	How many 5s go into 30?	They will also have	
	How many 5s go into 35?	developed understanding of	
	What does each symbol mean?	the 2 times-table.	
		This small step is focused on	
		the 5 times table and it is	
		important to include the use	
		of zero. Children should see	
		the =sign at both ends of the	
		calculation to understand	

		that it means 'equals to'.	
The	What if there were 10 packs of crayons?	Children have counted in	
10 Times	If there are 50 crayons altogether, how many packets	10s from any given whole	
	are there? How do you know?	number. This small step is	
	How many tens go into 30?	focused on the 10 times-	
	Can you count in 10s to 30?	table and it is important to	
	What does greater than mean?	include the use of zero.	
	What does less than mean?		
		Children should see the	
		=sign at both ends of the	
		calculation to understand	
		what it means.	