Year 2 Maths Autumn medium Term plan

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
들	Number: Place Value			Number: Addition and Subtraction					Measurement: Money		Number: Multiplication and Division	

$\left.\left.\begin{array}{|l|l|l|l|l|}\hline & & \text { Which would take a long time? } & \begin{array}{l}\text { made up. For example, they } \\ \text { can express 42 as 4 tens and } \\ \text { 2 ones or as 42 ones. }\end{array} \\ \hline & \begin{array}{l}\text { Tens and ones with } \\ \text { a part whole model }\end{array} & \begin{array}{l}\text { Which part do we know? How can we use the whole } \\ \text { and part to work out the missing part? } \\ \text { Can you use concrete resources/draw something to } \\ \text { help you partition? } \\ \text { How can you rearrange the counters to help you count } \\ \text { the lemon and strawberry cupcakes? }\end{array} & \begin{array}{l}\text { Children partition numbers } \\ \text { and should have an } \\ \text { understanding of what each } \\ \text { digit represents. } \\ \text { It is important that children } \\ \text { can partition numbers in a } \\ \text { variety of ways, not just as } \\ \text { tens and ones. For example, } \\ 58 \text { is made up of 5 tens and } \\ 8 \text { ones or 4 tens and 18 } \\ \text { ones, or 20 tens and 38 } \\ \text { ones, etc. }\end{array} \\ \hline & \begin{array}{ll}\text { Tens and ones using } \\ \text { addition }\end{array} & \begin{array}{l}\text { What clues are there in the calculations? } \\ \text { Can we look at the tens number or the ones number } \\ \text { to help us? } \\ \text { What number completes the part-whole model? } \\ \text { What is the same and different about the } \\ \text { calculations? } \\ \text { What are the key bits of information? } \\ \text { Can you draw a diagram to help you? }\end{array} & \begin{array}{l}\text { Children continue to use a } \\ \text { part-whole model to explore } \\ \text { how tens and ones can be } \\ \text { partitioned and recombined } \\ \text { to make a total. }\end{array} \\ \text { This small step will focus on } \\ \text { using the addition symbol to } \\ \text { express numbers to 100. For } \\ \text { example, 73 can be written } \\ \text { as 70 +3 =73 }\end{array}\right\} \begin{array}{l}\text { Children should formally } \\ \text { present their work in the } \\ \text { correct place value columns } \\ \text { to aid understanding of } \\ \text { place value. } \\ \text { It is important for children } \\ \text { to use concrete, pictorial } \\ \text { and abstract }\end{array}\right\}$

| | | | representations in their
 place value chart. |
| :--- | :--- | :--- | :--- | :--- |
| | Compare objects | How can you arrange the objects to make them easy
 to compare?
 Do groups of ten help you count? Why?
 Do groups of ten help you compare? Why? | Comparing objects is
 introduce once children
 have a secure understanding
 of numbers in a place value
 chart.
 Children are expected to
 compare a variety of objects
 using the vocabulary 'more
 than', 'less than' and 'equal
 to' and the symbols $<,>,=$. |
| | Compare numbers | Can you prove your answers using concrete
 resources?
 Can you prove your answers by drawing a diagram?
 Is there more than one answer?
 Do you need to work the number sentences out to
 decide which is greater? | Children compare numbers
 using the language greater
 than, less than, more than,
 fewer, most, least and equal
 to.
 They are able to use the
 symbols $<,>$ and =to write
 number
 sentences.
 Children should have access
 to concrete resources to
 help them justify their
 answers. |

Order objects and numbers	How does the number line help you order the numbers? How does Base 10 prove that your order is correct?	Children order numbers and objects from smallest to greatest or greatest to smallest. They should be encouraged to use concrete or pictorial representations to prove or check their answers. Children use the vocabulary 'smallest' and 'greatest' and may also use the <or $>$ symbols to show the order of their numbers.	
Count in 2s, 5s and 10s	What do you notice? Are the numbers getting larger or smaller? Are the numbers getting bigger or smaller each time? By how many? Can you spot a pattern? Why is it the odd one out? Can you correct the mistake?	Children count forwards and backwards in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s . It is important that children do not always start from zero, however they should start on a multiple of 2 or 5 when counting in 2 s and 5 s but can start from any number when counting in 10s. For example when counting in 2s they should not start at 3. Encourage children to look for patterns as they count.	
Count in 3s	What do you notice? Are the numbers getting larger or smaller? Can you spot a pattern?	Children count forwards and backwards in 3s from any multiple of 3 Encourage children to look for patterns as they count and use resources such as a	

		number track, a counting stick and concrete representations.	
NC Objectives: - Recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100. -Add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones; a two-digit number and tens; two two-digit numbers; adding three one-digit numbers. -Show that the addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. \bullet-Solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures; applying their increasing knowledge of mental and written methods. \bullet Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.			
Fact families addition and subtraction facts to 20	Can you write all associated number sentences in the fact family? What are the parts? What is the whole? What does each circle represent on the part-whole model? Showing the link between representations, such as part-whole models and bar models can support and deepen the children's understanding.	Children apply their understanding of known addition and subtraction facts within 20 to identify all related facts. This will include an understanding of the relationship between addition and subtraction, and knowing the purpose of the equals sign, as well as the addition and subtraction signs.	
Check calculations	What resources could you use to check your calculation? Can you check it in more than one way? Why do we need to check our calculation? Is there another way you could represent this?	It is essential that children have the opportunity to discuss and share strategies for checking addition and subtraction calculations. Checking calculations is not restricted to using the	

		inverse. Teachers should discuss using concrete resources, number lines and estimating as part of a wide range of checking strategies.	
Compare number sentences	What other numbers make the same total? Do we need to calculate the answer to work out the missing symbol? Do you notice a pattern? What would come next?	Children should be encouraged to examine number sentences to find missing values using structure rather than calculation. Using numbers within 20 to explore mathematical relationships will give the children confidence and allow them to spot patterns because they are working within the context of familiar numbers. Children should compare similar calculations using greater than, less than and equal to symbols.	
Related facts	What is the same? What is different? How does Base 10 help us to see the relationships between the different numbers and calculations? What do you notice about the part-whole models? Is there a relationship between the numbers that are represented?	children should have an understanding of calculations with Similar digits. For example, $2+5=7$, so $20+50=70$ This involves both addition and subtraction. It is important to highlight the correct vocabulary and help children to notice what is	

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|}\hline & & & \begin{array}{l}\text { the same and what is } \\
\text { different between } \\
\text { Numbers and calculations. } \\
\text { 'Tens' and 'ones' should be } \\
\text { used to aid understanding } \\
\text { using Base 10 can also help } \\
\text { the children to see }\end{array} \\
\text { relationships. }\end{array}
$$\right] \begin{array}{l}Teachers should focus at \\
this stage on multiples of 10 \\
up to and within 100 \\
Links should be made again \\
between single digit bonds \\
and tens bonds. \\
Using a 10 frame to \\
represent 100 would \\
be a useful resource to \\

make this link.\end{array}\right\}\)| Bonds to 100 |
| :--- |
| |

	pictorially?	as one ten is essential here. They need to be able to count to 20 and need to be able to partition two-digit numbers in order to add them. They need to understand the difference between one-digit and two-digit numbers and line them up in columns. In order to progress to using the number line more efficiently, children need to be secure in their number bonds.	
Subtract 1-digit from 2-digits	Are we counting backwards or forwards on the number line? Have we got enough ones to subtract? Can we exchange a ten for ten ones? How can we show the takeaway? Can we cross out The cubes?	Just as with addition, children need to have a strong understanding of place value for subtraction. Children need to be able to count to 20 and need to be able to partition two-digit numbers in order to subtract from them. They need to understand the difference between one -digit and two-digit numbers and line them up in columns. In order to progress to using the number line more efficiently, children need to	

| | | | be secure in their number
 bonds. |
| :--- | :--- | :--- | :--- | :--- |
| | Add 2-digit Numbers | Can you partition the number into tens and ones?
 Can you count the ones? Can you count the tens?
 Can you show your addition by drawing the Base
 10 to help? How could you represent the problem? | This step is an important
 pre-requisite before
 children add two-digit
 numbers with an exchange.
 Focus on the language of
 tens and ones and look
 at different methods to add
 the numbers including the
 column method.
 It is important that teachers
 always show the children to
 start with the ones when
 adding using the column
 method. |
| | Add 2-digit Numbers
 (2) | Can you represent the ones and tens using
 Base 10?
 What is the value of the digits?
 How many ones do we have altogether?
 How many tens do we have altogether?
 Can we exchange ten ones for one ten?
 What is the sum of the numbers?
 What is the total?
 How many have we Got altogether? | Children use Base10 and
 Partitioning to add
 together 2-digit numbers
 including an exchange. They
 could be encouraged to
 draw the Base 10 alongside
 recording any formal
 column method.
 They have already seen
 what happens when there
 are more than 10 ones and
 should be confident in
 exchanging 10 ones for One
 10. |
| Subtract with 2- | | | |
| digits | | Do we need to make both numbers in the
 subtraction before we takeaway?
 Which number do we need to make? The larger | This step is an important
 step before children start
 to look at subtraction |

$\left.\begin{array}{|l|l|l|l|l|}\hline & & \begin{array}{l}\text { number or the smaller? } \\ \text { What are the numbers worth? Tens or ones? } \\ \text { What happens if we have nothing left in a column? } \\ \text { Which number do we write? }\end{array} & \begin{array}{l}\text { where they cross a tens } \\ \text { boundary. } \\ \text { Children need to use } \\ \text { concrete materials but also } \\ \text { draw images of the Base } \\ 10 \text { so they can } \\ \text { independently } \\ \text { Solve problems. } \\ \text { Some children might think } \\ \text { that they need to 'build' } \\ \text { both numbers in the } \\ \text { calculation, unpicking this } \\ \text { misconception through } \\ \text { modelling and discussion } \\ \text { will help develop their } \\ \text { understanding. }\end{array} \\ \hline & \begin{array}{ll}\text { Subtract with 2- } \\ \text { digits (2) }\end{array} & \begin{array}{l}\text { Have we got enough ones to take away? } \\ \text { Can we exchange one ten for ten ones? } \\ \text { How many have we got left? } \\ \text { What is the difference between the numbers? } \\ \text { Do we always need to subtract the ones first? Why do } \\ \text { we always subtract the ones first? } \\ \text { Which method is the most efficient to find the } \\ \text { difference, subtraction or counting on? }\end{array} & \begin{array}{l}\text { Children use their } \\ \text { knowledge that one Ten is } \\ \text { The same as ten ones to } \\ \text { Exchange when crossing } \\ \text { A ten in subtraction } \\ \text { Continue to use concrete } \\ \text { manipulatives (such as Base } \\ 10) \text { and pictorial }\end{array} \\ \text { representations (such as } \\ \text { number lines and part- } \\ \text { whole models) to develop } \\ \text { the children's } \\ \text { understanding. } \\ \text { The skill of flexible } \\ \text { partitioning is useful here } \\ \text { when the children are } \\ \text { calculating with exchanges. }\end{array}\right\}$

| | Bonds to 100 (Tens
 and Ones) | How many more do we need to make 100?
 How many tens are in 100?
 If I have 35, do I need 7 tens and 5 ones to make
 $100 ?$
 Explain why.
 Can you make the number using Base 10?
 Can you add more Base 10 to the number to make
 $100 ?$ | Here children build on their
 earlier work on number
 bonds to 100 with tens
 together with number
 bonds to 10 and 20
 They use their new
 knowledge of exchange to
 find number bonds to 100
 with tens and ones.
 Using hundred squares,
 Base 10, bead strings etc.
 will help the children
 develop their
 understanding. |
| :--- | :--- | :--- | :--- | :--- |
| Add Three 1-digit | | | |
| Numbers | Can we change the order of the numbers to make the
 calculation easier?
 Why are we allowed to change the order of the
 numbers?
 Which two numbers did you add first? Why?
 What if you added a different two numbers first,
 would your answer be the same
 to find the most efficient
 and quick way to add the
 three one-digit numbers.
 They look for number bonds
 to 10 to help them add
 more efficiently. | | |

Money:

NC Objectives:

\bullet Recognise and use symbols for pounds ($£$) and pence (p); combine amounts to make a particular value.

- Find different combinations of coins that equal the same amounts of money.
- Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.

Select Money	How do you know you have made 56 p? Is your answer the same as your partner? Can you find any other ways to make this amount? Does it matter if you say pence or pounds first? Does this change the total? Can you show this amount in a different way?	Children select coins to make an amount, from a set of coins given to them. They will use these practically, draw them and write the abstract amounts. They will continue to use both pounds and pence to embed previous learning. Children are continuing to work on recognising money by selecting the correct coins or notes from a wide range.	
Make the Same Amount	Can the same amount be made using different coins? How did you compare the amounts? How is your way different to a partner? Can you swap a coin/note for others and still make the same amount? What is the smallest amount of coins you can use to make \qquad ?	Children explore The different ways of making the same amount. As before, they will not count pence over into pounds. Examples need to be modelled where pounds and pence are together but children need to continue to be encouraged to count the pounds and pence separately.	
Compare Money	What do you notice about the amounts you have compared? What's the same? What's different? How do you know who has the most, when they both have 64? Can you add a value that will go in between the	Use <, >or =to compare the amounts. Children compare two different values in either pounds or pence.	

	greatest and the least?	Children will see examples with both pounds and pence, but they will only focus on one of these -the other must be the same e.g. $£ 3$ and $10 p>£ 2$ and $10 p$ where 10 p is the constant. Children recap comparing vocabulary such as greater/less than and use the inequality symbols.	
Find the Total	How did you find the missing amounts? Share your strategies with a friend. Was your method different to a friend? What is the most efficient method? Why? Can you write a worded question for a friend? What was the greatest amount you found?	Children will build on their knowledge of addition to add money including: -2-digit and 2-digit -2-digit and ones -2-digit and tens -3-single digits Children will be encouraged to use different methods to add the amounts of money, such as count on, partitioning and regrouping.	
Find the Difference	Which costs more? How do you know? How can you work out how much more? What's the difference? How much less?/How many fewer? What method did you use to work this out?	Children expand their knowledge of addition and subtraction strategies by specifically finding the difference between two amounts. In this step, children should see both counting on and counting back being	

| | | | modelled to them.
 They need to discuss which
 is the most efficient for
 different questions. |
| :--- | :--- | :--- | :--- | :--- |
| | Find Change | How much does Dora have? How do you know?
 Can you write a calculation to work out how much she
 will have left?
 Why is it important to use the $£$ or p symbol?
 What strategy did you use to find the change?
 Did you use concrete objects to help? | Children build on their
 subtraction skills by finding
 change from a given
 amount. They need to
 identify amounts from the
 coins given, write the
 calculations and choose
 efficient methods.
 In this step, children will be
 introduced to converting $f 1$
 to 100 p to be able to
 subtract from f1. This links
 to their number bond
 knowledge to 100. |
| | Two-step Problems | Where does the $£ 33$ go in the bar model?
 How can you find the total?
 Here is a one step problem. Can you think of a second
 step?
 Can you write your own two step word problem?
 Did you use a concrete or pictorial representation to
 help you? | Children draw together all of
 the skills they have used in
 this block and consolidate
 their previous addition and
 subtraction learning.
 Children may need some
 scaffolding to see the
 different steps.
 Bar modelling is really useful
 to see the parts and wholes,
 and supports children in
 choosing the correct
 calculation. |

Multiplication and Division:

NC Objectives:
\bullet Recall and use multiplication and division facts for the 2,5 and 10 timestables, including recognising odd and even numbers.
\bullet-Calculate mathematical statements for multiplicationand division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) sign.
-Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

- Show that the multiplication of two numbers can be done in any order (commutative)and division of one number by another cannot.

| | Make Equal Groups | How else could you represent these in equal groups?
 How many ways can you represent this?
 How have you grouped your items? | Children should be able to
 make equal groups to
 demonstrate their
 understanding of the word
 'equal'.
 With the examples provided
 to the children, it is
 important that they are
 exposed to numerals and
 words, as well as multiple
 representations. |
| :--- | :--- | :--- | :--- | :--- |
| | What do the two 3s represent?
 Why are we using the addition symbol?
 How else can we show the equal groups?
 What is the total? | Children begin to connect
 equal groups to repeated
 addition.
 At this point children have
 added 3 one digit numbers
 Together, therefore they
 can add up to 3 equal
 groups when each group is
 any one digit number.
 If there are more than 3
 equal groups, the examples
 must be limited to 2s, 5s, | |

			10 s and 3s. The Multiplication Symbol	What does the 3 represent? What does the 6 represent? What does 'lots of' mean? Does $18=3 \times 6$ mean the same? How is $6+6+6$ the same as 3×6 ? How is it different?

| | | | that it means 'equals to'. |
| :--- | :--- | :--- | :--- | :--- |
| | The
 $\mathbf{1 0}$ Times | What if there were 10 packs of crayons?
 If there are 50 crayons altogether, how many packets
 are there? How do you know?
 How many tens go into 30?
 Can you count in 10s to 30?
 What does greater than mean?
 What does less than mean? | Children have counted in
 10s from any given whole
 number. This small step is
 focused on the 10 times-
 table and it is important to
 include the use of zero. |
| Children should see the | | | |
| sign at both ends of the | | | |
| calculation to understand | | | |
| what it means. | | | |\(\quad\left\{\begin{array}{l}

\hline\end{array}\right.\)

