Multiplication and Division:

NC Objectives:

\bullet Recall and use multiplication and division facts for the 2, 5 and 10 times tables, including recognising odd and even numbers.

- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals ($=$) signs.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.
- Show that the multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.

Week	Small step	Key Questions	Notes and Guidance	Assessment
	Make equal groups sharing	How many do you have to begin with? How many equal groups are you sharing between? How many are in each group? How do you know that you have shared the objects equally? \qquad has been shared equally into \qquad equal groups. I have \qquad in each group. \qquad groups of \qquad make \qquad	Children divide by sharing objects into equal groups using one-to-one correspondence. They need to do this using concrete manipulatives in different contexts, then move on to pictorial representations. Children will be introduced to the ' \because ' symbol. They will begin to see the link between division and multiplication.	
	Make equal groups grouping	How many do you have to begin with? How many are in each group? How many groups can you make? How long should your number line be? What will you count up in? \qquad groups of \qquad make \qquad	Children divide by making equal groups. They then count on to find the total number of groups. They need to do this using concrete manipulatives and pictorially in a variety of contexts. They need to recognise the link between division, multiplication and repeated addition.	
	Divide by 2	What do you notice when you group these objects into twos?	Children should be secure with grouping and sharing. They will use this knowledge	

| | | Is there a link between dividing by 2 and
 halving?
 What is different about sharing into two
 groups and grouping in twos?
 Can we write a multiplication sentence them divide by 2
 as well as a division sentence? What do
 you notice? | to help
 They will be secure with representing
 division as an abstract number sentence
 using the division and equals symbol.
 Children should be able to count in 2s and
 know their 2 times table. |
| :--- | :--- | :--- | :--- | :--- |
| | Odd and even
 numbers | Can you sort these objects (number
 pieces, ten frames, cubes, pictures etc)
 into an odd set and an even set?
 What makes these odd/even?
 How do you find out if __ is an odd or
 even number?
 Can you find all the odd and even
 numbers on a 100 square?
 What do you notice? | Building on from Year 1, children should be
 able to recognise odd and even numbers.
 They will use concrete manipulatives to
 explore odd and even numbers and the
 structure of these. |
| Divide by 5 | How can we represent the problem
 using objects/images?
 How does knowing your 5 times table
 help when dividing by 5?
 Circle all the multiples of 5 on a 100
 square. What do you notice about the
 numbers? Can you explain the pattern?
 How does this help you to divide these
 numbers?
 When would we count in 5s? | During this step, children focus on efficient
 strategies and whether they should use
 grouping or sharing depending on the
 context of the question.
 They use their knowledge of the five times
 table to help them divide by 5
 They will continue to see the = sign both
 before and after the calculation. | |
| | What can we use to represent the
 problem?
 How does knowing your 10 times table
 help you to divide by 10?
 Circle all the multiples of 10 on a
 hundred square. What do you notice?
 Can you explain the pattern? | Children should already be able to multiply
 by 10 and recognise multiples of 10. They
 will need to use both grouping and sharing
 to divide by 10 depending on the context
 of the problem.
 Children start to see that grouping and
 counting in 10s is more efficient than | |

	How many groups of 10 are there in \qquad ?	sharing into 10 equal groups.	
NC Objectives -Tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times. - Know the number of minutes in an hour and the number of hours in a day. - Compare and sequence intervals of time			
O clock and half past	What do the numbers represent on the clock face? Which is the hour hand? Which is the minute hand? Where will the hour hand be at \qquad ? Where will the minute hand be at \qquad ? What do you notice about the minute hand at half past? Can you show me ? \qquad	Children recap telling the time to o'clock and half past from Year 1 Children should be given the opportunity to create times using individual clocks with moveable hands. Children read and write times from given clocks.	
Quarter past and quarter to	Where are the hands pointing to? Can we divide the clock face into four equal parts? Can we link this to fractions? If the minute hand is pointing at 3 , how many minutes have past the hour? If the minute hand is pointing at 9 , how many minutes until the next hour? Show me quarter past/to....	Children read and draw the time to quarter to and quarter past. Children use their knowledge of fractions and turns to identify quarter past and quarter to. Children should recognise that the hour hand also moves as the minute hand does. Therefore when the time is quarter past the hour, the hour hand will be just past the hour number and when the time is quarter to, the hour hand will be just before the hour number.	
Telling Time to 5 minutes	Can we count in 5 s? What does each number on the clock represent? How can we count round the clock? Are there any other way to say 15 past/to and 30 past/to?	Children read and show analogue time to 5 minute intervals. Children should be confident at counting in steps of 5 from 0 to 60 so they can then apply this to counting around the clock in fives and use this method to work out what time is	

| | Count vertices on 2d
 shapes | Show me a vertex.
 Can you identify the vertices in this
 shape?
 Would this be a vertex? Explain why.
 If I have vertices, what could my
 shape be?
 What won't it be? | Children are introduced to the term
 vertices. They will understand that a
 vertex is where two lines meet at a point.
 By exploring the non-concept, e.g. a
 perpendicular line, they will recognise that
 corners are vertices and be able to count
 them in real-life 2D shapes. |
| :--- | :--- | :--- | :--- | :--- |
| | Draw 2d shapes | Where are you going to start drawing
 the shape?
 In the middle of a side?
 At a vertex?
 Which is the most efficient way?
 Can you make the shape on a
 geoboard?
 How many sides has the shape got?
 Can you draw a rectangle?
 Can you now draw a larger rectangle? | Children use their knowledge of properties
 of shape to accurately draw 2D shapes.
 Starting with geoboards, children make
 shapes with elastic bands to look carefully
 at the number of sides and vertices. They
 then use rulers and straight edges to draw
 the shapes on squared or dotty paper. |
| | Lines of symmetry | What is a vertical line of symmetry?
 What does vertical mean?
 Which is the odd shape out?
 How do you know?
 What resources could you use to check
 if a shape has a vertical line of
 symmetry? | In the previous small steps, children have
 identified and described 2D shapes
 according to the number of sides and
 vertices. They now need to be introduced
 to the concept of symmetry. There are a
 range of practical resources that would
 introduce them to the concept of shapes
 being halved on their vertical line of
 symmetry, such as mirrors, GeoBoards and
 paper folding. |
| Sort 2d shapes | How have you sorted your shapes?
 How do you know you have sorted your
 shapes correctly?
 Which method have you used to sort
 your shapes? | Chame 2D shapes including circle, square,
 triangle, rectangle, pentagon, hexagon and
 octagon using a range of different
 orientations and real life objects. Children
 need to be able to count the number of | |

	with ____ edges?	surface meet. To avoid over counting the edges children need to mark each edge in some way. Children need to be able to visualise the 3D shape from a 2D representation on paper.	
Count vertices on 3d shapes	What do we mean by the 'vertices' of a shape? How can you make sure that you don't count the vertices more than once? How many edges meet to make a vertex on a 3D shape? How many sides meet to make a vertex on a 2D shape?	Children will use their knowledge of edges to help them to identify vertices on 3D shapes. They need to be discretely taught that a vertex is where 2 or more edges meet. Note - a cone has an apex not a vertex, because it has one curved surface. To avoid over counting the vertices children need to mark each edge in some way. Children need to be able to visualise the 3D shape from a 2D representation on paper	
Sort 3d shapes	How have you sorted your shapes? How do you know you have sorted your shapes correctly? Which method have you used to sort your shapes? Can you sort your shapes in a different way? an you group your solids by shape, type of faces and size?	Children need to be able to recognise and name 3D shapes including cube, sphere, cuboid, cone, cylinder, triangular prism and square-based pyramid using a range of different orientations and real life objects. Children need to be able to count the number of sides and vertices on 3D shapes including cube, sphere, cuboid, cone, cylinder, triangular prism and squarebased pyramid. In this small step, children should have access to a range of real life objects to sort and compare.	
Make Patterns with 3d shapes	Where can you see real life patterns with 3D shapes? Can you explain your pattern to a partner? Does the shape always have to be a	Children should be familiar with the names and properties of 3D shapes at this stage. This step allows opportunities to justify choices in pattern making and reinforce shape vocabulary. Discussion around the	

| | | certain way up?
 Can you work out what shape would be
 the __th? | orientation of the shape should be
 encouraged by making patterns with the
 same shape as per the example with the
 cones below. A wide range of examples of
 shapes should be used, including,
 Polydron, cereal boxes, different sized
 balls, food cans etc. |
| :--- | :--- | :--- | :--- | :--- |

