Multiplication and Division:

NC Objectives:

•Recall and use multiplication and division facts for the 2, 5 and 10 times tables, including recognising odd and even numbers.

•Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×),

division (÷) and equals (=) signs.

•Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods and multiplication and division facts, including problems in contexts.

•Show that the multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.

Week	Small step	Key Questions	Notes and Guidance	Assessment
	Make equal groups -	How many do you have to begin with?	Children divide by sharing objects into	
	sharing	How many equal groups are you sharing	equal groups using one-to-one	
		between?	correspondence. They need to do this	
		How many are in each group?	using concrete manipulatives in different	
		How do you know that you have shared	contexts, then move on to pictorial	
		the objects equally?	representations.	
		has been shared equally into	Children will be introduced to the '÷'	
		equal groups.	symbol. They will begin to see the link	
		I have in each group groups of	between division and multiplication.	
		make		
	Make equal groups -	How many do you have to begin with?	Children divide by making equal groups.	
	grouping	How many are in each group?	They then count on to find the total	
		How many groups can you make?	number of groups.	
		How long should your number line be?	They need to do this using concrete	
		What will you count up in?	manipulatives and pictorially in a variety of	
		groups of make	contexts.	
			They need to recognise the link between	
			division, multiplication and repeated	
			addition.	
	Divide by 2	What do you notice when you group	Children should be secure with grouping	
	-	these objects into twos?	and sharing. They will use this knowledge	

	Is there a link between dividing by 2 and halving? What is different about sharing into two groups and grouping in twos? Can we write a multiplication sentence as well as a division sentence? What do you notice?	to help them divide by 2 They will be secure with representing division as an abstract number sentence using the division and equals symbol. Children should be able to count in 2s and know their 2 times table.	
Odd and even numbers	Can you sort these objects (number pieces, ten frames, cubes, pictures etc) into an odd set and an even set? What makes these odd/even? How do you find out if is an odd or even number? Can you find all the odd and even numbers on a 100 square? What do you notice?	Building on from Year 1, children should be able to recognise odd and even numbers. They will use concrete manipulatives to explore odd and even numbers and the structure of these.	
Divide by 5	 How can we represent the problem using objects/images? How does knowing your 5 times table help when dividing by 5? Circle all the multiples of 5 on a 100 square. What do you notice about the numbers? Can you explain the pattern? How does this help you to divide these numbers? When would we count in 5s? 	During this step, children focus on efficient strategies and whether they should use grouping or sharing depending on the context of the question. They use their knowledge of the five times table to help them divide by 5 They will continue to see the = sign both before and after the calculation.	
Divide by 10	What can we use to represent the problem? How does knowing your 10 times table help you to divide by 10? Circle all the multiples of 10 on a hundred square. What do you notice? Can you explain the pattern?	Children should already be able to multiply by 10 and recognise multiples of 10. They will need to use both grouping and sharing to divide by 10 depending on the context of the problem. Children start to see that grouping and counting in 10s is more efficient than	

	How many groups of 10 are there in?	sharing into 10 equal groups.	
IC Objectives	Measurem	ent: Time and draw the hands on a clock face to show t	hasa timas
	an hour and the number of hours in a day.		nese times.
O clock and half past	What do the numbers represent on the clock face? Which is the hour hand? Which is the minute hand? Where will the hour hand be at? Where will the minute hand be at? What do you notice about the minute hand at half past?	Children recap telling the time to o'clock and half past from Year 1 Children should be given the opportunity to create times using individual clocks with moveable hands. Children read and write times from given clocks.	
Quarter past and quarter to	Can you show me? Where are the hands pointing to? Can we divide the clock face into four equal parts? Can we link this to fractions? If the minute hand is pointing at 3, how many minutes have past the hour? If the minute hand is pointing at 9, how many minutes until the next hour? Show me quarter past/to	Children read and draw the time to quarter to and quarter past. Children use their knowledge of fractions and turns to identify quarter past and quarter to. Children should recognise that the hour hand also moves as the minute hand does. Therefore when the time is quarter past the hour, the hour hand will be just past the hour number and when the time is quarter to, the hour hand will be just before the hour number.	
Telling Time to 5 minutes	Can we count in 5s? What does each number on the clock represent? How can we count round the clock? Are there any other way to say 15 past/to and 30 past/to?	Children read and show analogue time to 5 minute intervals. Children should be confident at counting in steps of 5 from 0 to 60 so they can then apply this to counting around the clock in fives and use this method to work out what time is	

Minutes in an hour, hours in a day	Where will the minute hand be at ? Where will the hour hand be at ? How do we know whether it is a 'past' or a 'to' time? Can you show past/to? What are the hours of the day? How many are there? Are there more or less hours in the morning than the afternoon? How can you find out how many minutes are in an hour/half an hour/quarter of an hour? Are there more/less minutes in than? How many hours make up minutes? What is the most efficient way to count minutes in hours and vice versa? What times table can you use to help you?	shown. Children need to recognise that once the minute hand gets past 6 the time becomes 'to' the next hour, rather than 'past' the hour. Children learn there are 24 hours in a day and 60 minutes in an hour. Children use clocks to convert minutes to hours and minutes and vice versa. Children should be encouraged to use their knowledge of counting in fives to help them convert.	
Find durations of time	you? What is the start time? What is the end time? How can we show this on the clock? How long did the event last? How did you work out the duration? Are there any other methods for working out duration?	Children identify when an event starts and when an event finishes. They use these times to work out how long an event lasted. Children should be confident in explaining what 'duration' means. Children use individual clocks and number lines to help them work out the duration of an event.	
Compare durations of time	Which is longer 1 minute or 1 hour? If you know this, what else do you know?	Children compare times using 'longer' and 'shorter'. They order times from longest to shortest and vice versa. Children then	

	How can you order the times?	compare durations of time taken by	
	How many minutes does each TV show	particular events or tasks given the start	
	last?	and end times. They explore ways to work	
	How can we count the minutes	out durations of time most efficiently.	
	efficiently?	out durations of time most efficiently.	
	How much longer is Pop World than		
	Animal Patrol?		
	How can we efficiently work out the		
	length of time each person works?		
	Geometry: Prope	erties of Shapes	
NC Objectives:			
 Identify and describe the propert 	ies of 2-D shapes, including the number of	sides and line symmetry in a vertical line.	
 Identify and describe the propert 	ies of 3-D shapes, including the number of	edges, vertices and faces.	
	ce of 3-D shapes, [for example, a circle on a	a cylinder and a triangle on a pyramid.]	
•Compare and sort common 2-D a	and 3-D shapes and everyday objects.		
Recognise 2d and 3d	What shape is this?	Before learning about their properties,	
shapes	If I turn it around, now what shape is	children need to recognise and name both	
	it?	2D and 3D shapes and to be able to	
	Can you draw around any of the faces	differentiate between them. They need to	
	on your 3D shapes?	begin to understand that 2D shapes are	
	Which 2D shapes can you make?	actually flat and so cannot be handled or	
	Are there any you can't draw around?	picked up. Children also need to be able to	
		recognise 2D shapes in different	
		orientations	
Count sides on 2d	What is a side?	In this step, children need to recognise	
shapes	Are all sides straight?	that there are both straight sides and	
	How can you check that you have	curved sides. Children should be	
	counted all sides?	encouraged to develop strategies for	
	Do all four-sided shapes look the same?	accurate counting of sides, such as by	
		marking each side as it has been counted.	
		Children also need to understand that not	
		all same-sided shapes look the same, such	
		as with irregular 2D shapes.	

Count vertices on 2d	Show me a vertex.	Children are introduced to the term	
shapes	Can you identify the vertices in this	vertices. They will understand that a	
	shape?	vertex is where two lines meet at a point.	
	Would this be a vertex? Explain why.	By exploring the non-concept, e.g. a	
	If I have vertices, what could my	perpendicular line, they will recognise that	
	shape be?	corners are vertices and be able to count	
	What won't it be?	them in real-life 2D shapes.	
Draw 2d shapes	Where are you going to start drawing	Children use their knowledge of properties	
	the shape?	of shape to accurately draw 2D shapes.	
	In the middle of a side?	Starting with geoboards, children make	
	At a vertex?	shapes with elastic bands to look carefully	
	Which is the most efficient way?	at the number of sides and vertices. They	
	Can you make the shape on a	then use rulers and straight edges to draw	
	geoboard?	the shapes on squared or dotty paper.	
	How many sides has the shape got?		
	Can you draw a rectangle?		
	Can you now draw a larger rectangle?		
Lines of symmetry	What is a vertical line of symmetry?	In the previous small steps, children have	
	What does vertical mean?	identified and described 2D shapes	
	Which is the odd shape out?	according to the number of sides and	
	How do you know?	vertices. They now need to be introduced	
	What resources could you use to check	to the concept of symmetry. There are a	
	if a shape has a vertical line of	range of practical resources that would	
	symmetry?	introduce them to the concept of shapes	
		being halved on their vertical line of	
		symmetry, such as mirrors, GeoBoards and	
		paper folding.	
Sort 2d shapes	How have you sorted your shapes?	Children need to be able to recognise and	
	How do you know you have sorted your	name 2D shapes including circle, square,	
	shapes correctly?	triangle, rectangle, pentagon, hexagon and	
	Which method have you used to sort	octagon using a range of different	
	your shapes?	orientations and real life objects. Children	
		need to be able to count the number of	

		sides and vertices on 2D shapes including	
		circle, square, triangle, rectangle,	
		pentagon, hexagon and octagon. Children	
		may have been introduced to the Venn	
		diagram in cross curricular work so they	
		can focus on the shapes within this step.	
Make pattern with	Can you explain the pattern?	At this stage children should be able to	
2d shapes	How many time does the pattern	name and draw 2D shapes and be familiar	
	repeat?	with their properties. Children should	
	How are these patterns similar?	recognise symmetry within shapes and be	
	How are these patterns different?	shown shapes in different orientations.	
	How can you work out which shape will	Children should be encouraged to place	
	cometh?	the shapes in different orientations when	
		making patterns and recognise that it is	
		still a square, triangle etc. Squares do not	
		become diamonds when turned sideways.	
Count faces on 3d	What do we mean by the 'face' of a	Children will use their knowledge of 2D	
shapes	shape?	shapes to identify the shapes of faces on	
	What is the difference between a face	3D shapes. To avoid over counting the	
	and a curved surface?	faces children need to mark each face in	
	What real life objects have 6 faces like a	some way. Children need to be able to	
	cube?	visualise the 3D shape from a 2D	
	Does a cuboid always have 2 square	representation on paper. Cones should be	
	faces and 4 rectangular faces?	described as having 1 face and 1 curved	
	Which 2D shapes can you see on	surface; cylinders as having 2 faces and 1	
	different 3D shapes?	curved surface and spheres having 1	
	How can you make sure that you don't	curved surface.	
	count the faces more than once?		
Count edges on 3d	What do we mean by the 'edge' of a	Children will use their knowledge of faces	
shapes	shape?	and curved surfaces to help them to	
	How can you make sure that you don't	identify edges on 3D shapes. They need to	
	count the edges more than once?	be discretely taught that an edge is where	
	What do you notice about the shapes	2 faces meet or where a face and a curved	

	with edges?	surface meet. To avoid over counting the	
		-	
		edges children need to mark each edge in	
		some way. Children need to be able to	
		visualise the 3D shape from a 2D	
		representation on paper.	
Count vertices on 3d	What do we mean by the 'vertices' of a	Children will use their knowledge of edges	
shapes	shape?	to help them to identify vertices on 3D	
	How can you make sure that you don't	shapes. They need to be discretely taught	
	count the vertices more than once?	that a vertex is where 2 or more edges	
	How many edges meet to make a vertex	meet. Note – a cone has an apex not a	
	on a 3D shape?	vertex, because it has one curved surface.	
	How many sides meet to make a vertex	To avoid over counting the vertices	
	on a 2D shape?	children need to mark each edge in some	
		way. Children need to be able to visualise	
		the 3D shape from a 2D representation on	
		paper	
Sort 3d shapes	How have you sorted your shapes?	Children need to be able to recognise and	
	How do you know you have sorted your	name 3D shapes including cube, sphere,	
	shapes correctly?	cuboid, cone, cylinder, triangular prism	
	Which method have you used to sort	and square-based pyramid using a range of	
	your shapes?	different orientations and real life objects.	
	Can you sort your shapes in a different	Children need to be able to count the	
	way?	number of sides and vertices on 3D shapes	
	an you group your solids by shape, type	including cube, sphere, cuboid, cone,	
	of faces and size?	cylinder, triangular prism and square-	
		based pyramid. In this small step, children	
		should have access to a range of real life	
		objects to sort and compare.	
Make Patterns with	Where can you see real life patterns	Children should be familiar with the names	
3d shapes	with 3D shapes?	and properties of 3D shapes at this stage.	
	Can you explain your pattern to a	This step allows opportunities to justify	
	partner?	choices in pattern making and reinforce	
	Does the shape always have to be a	shape vocabulary. Discussion around the	

certain way up?	orientation of the shape should be
Can you work out what shap	be would be encouraged by making patterns with the
theth?	same shape as per the example with the
	cones below. A wide range of examples of
	shapes should be used, including,
	Polydron, cereal boxes, different sized
	balls, food cans etc.