Year 3 Maths Autumn medium Term plan

Number: Place Value				
NC objectives: -Identify, represent and estimate numbers using different representations. -Find $\mathbf{1 0}$ or $\mathbf{1 0 0}$ more or less than a given number. -Recognise the place value of each digit in a three-digit number (hundreds, tens, ones). - Compare and order number up to 1,000 . -Read and write numbers up to 1,000 in numerals and in words. - Solve number problems and practical problems involving these ideas. -Count from 0 in multiples of 4,8,50 and 100				
Week	Small step	Key Questions	Notes and Guidance	Assessment
	Hundreds	How many tens have you made? How else can we say this? What do these digits mean/represent? How many ones have you made? How else can you say this? If we continue counting in tens, what do we say after 100 ? What numbers wouldn't we say?	Children build on their understanding of tens and link this to 100 . This is the first time they explore 100 explicitly. It is crucial children understand that ten tens make 100 and a hundred ones make 100 They use a variety of concrete equipment to see this relationship. Once children understand the concept of 100, they will count objects and numbers in multiples of 100 up to 1,000	
	Represent numbers to a 1000	Does it matter which order you build the number in? Can you have more than 9 of the same	In this small step, children will primarily use Base 10 to become familiar with any number up to 1,000	

		greatest/smallest number? What number is being represented by the place value counters/Base 10? What does the word ascending/descending mean? Can you find more than one way to order your numbers?	from smallest to greatest and greatest to smallest. They need to be able to explain their reasoning throughout. At this point, children are introduced to the words ascending and descending.	
	What is the same and what is different between counting in 5s and counting in 50s? Hence, what is the connection between the 5 times table and the 50 times table? Can you notice a pattern as the numbers increase/decrease? Can you correct the mistakes in each?	Children use their knowledge of the patterns in the 5 times table to count in steps of 50 They should start from any given multiple of 50 and be able to count both forwards and backwards.		

Addition and Subtraction

NC Objectives:

-Add and subtract numbers mentally, including: a three-digit number and ones; a three-digit number and tens; a three-digit number and hundreds.
-Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction.

- Estimate the answer to a calculation and use inverse operations to check answers.
- Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction

-Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction				
	Add and Subtract multiples of 100	What is the same and what is different about 2 ones and 3 ones, 2 tens and 3 tens and 2 hundreds and 3 hundreds? What is__ hundreds and _- hundreds equal to? How many different ways can you represent 200 + 300?	Children are introduced to numbers greater than 100 They will apply their prior knowledge of adding and subtracting ones and tens to adding and subtracting multiples of 100 Using concrete manipulatives and pictorial representations throughout is important so the children can see the value of hundreds.	
	Add and subtract 3 digit and 1 digit	Which column do I need to focus on? Do we need to make and use the whole	During this small step, children add and subtract ones from a 3-digit number.	

$\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}\text { numbers= not } \\ \text { crossing } 10\end{array} & \begin{array}{l}\text { number? Why? } \\ \text { How can you explain your method? Is } \\ \text { there another way of checking? } \\ \text { What do we do when there are no ones } \\ \text { left? } \\ \text { Can you use <and >to compare Sam and } \\ \text { Tim's team points? }\end{array} & \begin{array}{l}\text { Children don't exchange or cross the ten, } \\ \text { so they can build number sense. For } \\ \text { example, if a child is completing 214-3 } \\ \text { and 214 +3 they should learn that they can } \\ \text { ignore the hundreds and tens at this stage. } \\ \text { Therefore, all they need to do is 4 +3 and 4 } \\ -3 \text { respectively. The use of the column } \\ \text { method can be used but mental arithmetic } \\ \text { is the best strategy. }\end{array} \\ \hline & \begin{array}{ll}\text { Add 3 digit and 1 } \\ \text { digit numbers - } \\ \text { crossing 10 }\end{array} & \begin{array}{l}\text { When you add ones to a number does it } \\ \text { always, sometimes or never affect the } \\ \text { tens column? } \\ \text { What is the largest number you can } \\ \text { have in each column? Why? }\end{array} & \begin{array}{l}\text { Children add ones to a 3-digit number, } \\ \text { with an exchange. They must understand } \\ \text { that when adding ones it can affect the }\end{array} \\ \text { ones column and the tens column. } \\ \text { Children must also know that we can only } \\ \text { hold single digits in each column, anything } \\ \text { over must be exchanged. The use of0, e.g. } \\ 145 \text {-5 is important so they know to use }\end{array}\right\}$

| | | Why don't we have to calculate for
 each? Give a reason. | this is needed and explain why. Mental
 methods should be encouraged
 throughout. |
| :--- | :--- | :--- | :--- | :--- |
| | Add 3 digit and 2
 digit numbers -
 crossing 100 | How many tens do we have?
 What can we do with the tens?
 If we know how to count in tens, do we
 always need to use the column method
 or other methods?
 Would it be easier for us to just count
 up in our heads? | Children add multiples of 10, to a 3-digit
 number with an exchange. They will
 recognise that when adding tens, it can
 change the tens and hundreds column.
 The column addition method has not been
 used within this small step because it is
 not the most efficient method. Children
 should be counting in tens. Draw on
 knowledge of inverse to be able to work
 out missing number problems. |
| | Subtract a 2 digit
 number from a 3
 digit number
 crossing 100 | How can we use the number line?
 Why are the numbers 23 and 57 shown
 on the part-whole model?
 Is there another question we can use to
 test this strategy? | Children subtract multiples of10 from a 3-
 digit number, with an exchange. The
 examples show different ways this concept
 could be taught using number lines and
 part whole models. The column method
 could be used, however, it is not the most
 efficient method. Counting backwards in
 tens or using 100 to help will support
 mental strategies |
| | Add and subtract
 100 s | What do you notice when we add and
 subtract 100s from a 3 digit number?
 What is the calculation that matches
 the word problem?
 What does each number in your
 calculation represent?
 Is there more than one way to complete
 the questions? | Children build on their knowledge of
 adding 100s together, e.g. 300 +500 by
 adding ones and tens to solve calculations
 such as 234 +500 It is important to build
 number sense' and ask the children why
 the column method isn't the most
 effective method to solve questions like
 the ones modelled. We can 'bypass' the
 tens and ones column because of the zeros
 in 500 |

$\left.\begin{array}{|l|l|l|l|l|}\hline & \text { making it explicit } & \begin{array}{l}\text { can we use to add these numbers? } \\ \text { Do we need to write a zero in the } \\ \text { hundreds column when there are no } \\ \text { hundreds left? } \\ \text { Do we always need to work out each } \\ \text { calculation or can we use what we } \\ \text { already know? }\end{array} & \begin{array}{l}\text { hundreds to 3digit numbers. It is } \\ \text { important in this step that children don't } \\ \text { end up with the misconception that } \\ \text { adding and subtracting ones only affects } \\ \text { the ones column, because they need to } \\ \text { identify it can affect the tens column too }\end{array} \\ \hline & \begin{array}{l}\text { Add and subtract a 2 } \\ \text { digit and } 3 \text { digit } \\ \text { number - crossing } \\ 10 \text { or 100 }\end{array} & \begin{array}{l}\text { Where would these digits go on the } \\ \text { place value chart? Why? } \\ \text { When we subtract, why do we not } \\ \text { make both numbers? } \\ \text { Why do we make both numbers when } \\ \text { we add? } \\ \text { Can you represent using the } \\ \text { equipment? }\end{array} & \begin{array}{l}\text { Children focus on the position of numbers } \\ \text { and place value to add and subtract 2-digit } \\ \text { and 3-digit numbers. } \\ \text { The use of concrete equipment will } \\ \text { support understanding at this stage. }\end{array} \\ \hline & \begin{array}{l}\text { Subtract a 2 digit } \\ \text { number from a 3 } \\ \text { digit number } \\ \text { crossing 10 Or 100 }\end{array} & \begin{array}{l}\text { What happens when we have 10 ones? } \\ \text { Can we exchange them for anything? } \\ \text { Why? } \\ \text { Where does this ten go? How does that } \\ \text { help us? } \\ \text { What happens when we have 10 tens? } \\ \text { Can we exchange them for anything? } \\ \text { Why? }\end{array} & \begin{array}{l}\text { Children add 3 and 2 digit numbers that } \\ \text { cross both the 10 and 100 barrier. They } \\ \text { build upon the previous small steps and } \\ \text { the concept of 'exchange' is explored. } \\ \text { They focus on the position of numbers and } \\ \text { place value. The placement of numbers is } \\ \text { also key, i.e. 'Does it matter which number } \\ \text { goes on top?' The use of concrete }\end{array} \\ \text { Where does this hundred go? How does } \\ \text { equipment will support understanding at } \\ \text { this stage. }\end{array}\right\}$

	Add two 3 digit numbers - crossing 10 or 100	Where would these digits go on the place value chart? Why? Why do we make both numbers when we add? Can you represent using the equipment? Can you draw a picture to represent this? Why is it important to put the digits in the correct column?	Children add two 3-digit numbers with no exchange. Use of place value counters builds on children's understanding of Base 10 equipment, as the individual units can no longer be seen.	
	Subtract a 3 digit number from a 3 digit number - no exchange	Where would these digits go on the place value chart? Why? Why do we make both numbers when we add? Can you represent using the equipment? Can you draw a picture to represent this? Why is it important to put the digits in the correct column?	Children continue to add two 3-digit numbers, this time where an exchange is required. Use of place value counters builds on children's understanding of Base 10 equipment, as the individual units can no longer be seen.	
	Subtract a 3 digit number from a 3 digit number - exchange	Which method would you use for this calculation and why? What happens when you can't subtract 9 from 7? 50 from 30 etc. How would you teach somebody else to use column subtraction with exchange? Why do we exchange? When do we exchange?	Children explore column subtraction using concrete manipulatives. It is important to show the column method alongside so that children make the connection to the abstract and understand what is happening.	
	Estimate answers to calculations	What would you estimate this to be? Why did you choose this number? Why is/isn't this a sensible estimation to an answer? How did they work out this answer?	Children check how reasonable their answers are. While rounding is not formally introduced until Year 4, it is helpful that children can refer to 'near numbers' to see whether an estimate is	

| | | Could you do it in a different/better
 way? | sensible. |
| :--- | :--- | :--- | :--- | :--- |
| | Check | How can you tell if your answer is
 sensible?
 Does knowing if a number is close to a
 multiple of 100 help when adding and
 subtracting 3-digitnumbers?
 How does it help?
 Does it help to check your answer if you
 spot which numbers are near to
 multiples of 10?
 How does counting 10s, 50s and
 100 shelp? | Children explore ways of checking to see if
 an answer is reasonable.
 Checking using inverse is to be encouraged
 so that children are using a different
 method and not just potentially repeating
 an error, for example, if they add in a
 different order. | Multiplication and Division

NC Objectives:

\bullet Count from 0 in multiples of 4, 8, 50 and 100.

- Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.
-Write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including for two digit numbers times one-digit numbers, using mental and progressing to formal written methods.
-Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which \mathbf{n} objects are connected to \mathbf{m} objectives.

	Multiplication -equal groups	What is the same and what is different between each of the groups? What does the 3 represent? What does the 8 represent? How can we represent the groups?	Children recap their understanding of recognising, making and adding equal groups. This will allow them to build on prior learning and prepare them for the next small steps.	
	Multiply by 3	How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture?	Children draw on their knowledge of counting in threes in order to start to multiply by 3 They use their knowledge of equal groups to use concrete and pictorial methods to solve multiplication.	

	Can you use concrete apparatus to solve the problem? How many lots of 3 do we have? How many groups of 3 do we have?		
Divide by 3	Can you group the numbers in threes? Can you share the number into three groups? What is the difference between sharing and grouping?	Children explore dividing by 3 through sharing into three groups and grouping in threes. They use concrete and pictorial representations and use their knowledge of the inverse to check their answers.	
The $3 \times$ table	Can you use concrete or pictorial representations to help you? What other facts can you link to this one? What other times tables will help you with this times table?	Children draw together their knowledge of multiplying and dividing by three in order to become more fluent in the three times table. Children apply their knowledge to different contexts	
Multiply by 4	How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture? Can you use concrete apparatus to solve the problem? How many lots of 4 do we have? How many groups of 4 do we have?	Building on their knowledge of the two times table, children start to multiply by four. They link to the idea of doubling the number and doubling again. They link multiplying by four to repeated addition and counting in fours. To show the multiplication of four, teachers may use Numicon, cubes, counters, bar models etc.	
Divide by 4	Can you group the numbers in fours? Can you share the number into four groups? What is the difference between sharing and grouping?	Children explore dividing by 4 through sharing into four groups and grouping in fours. They use concrete and pictorial representations and their knowledge of the inverse to check their answers.	
The $4 \times$ table	What do you notice about the pattern? Can you use concrete or pictorial	Children use knowledge of known multiplication tables (2, 3, 5 and 10 times	

	representations to help you? What other facts can you link to this one? What other times tables will help you with this times table?	tables) and understanding of key concepts of multiplication. Children who have learnt $3 \times 4=12$ can use understanding of commutativity to know $4 \times 3=12$	
Multiply by 8	How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture? Can you use concrete apparatus to solve the problem? How many lots of 8 do we have? How many groups of 8 do we have? We have 8 groups, how many are in each group?	Building on their knowledge of the four times table, children start to multiply by eight. They link to the idea of doubling the number twice and then doubling again. They link multiplying by eight to previous knowledge of equal groups and repeated addition. Children explore the concept of multiplying by 8 in different ways; when 8 is the multiplicand and where 8 is the multiplier.	
Divide by 8	What concrete/pictorial representations might help you? Can you group the numbers in eights? Can you share the number into eights groups? Can you use any prior knowledge to check your answer?	Children explore dividing by 8 through sharing into eight groups and grouping in eights. They use concrete and pictorial representations and their knowledge of inverse operations to check their answers	
The $8 \times$ table	Why is it helpful to partition the number you are multiplying by? Can you use concrete or pictorial representations to help you? What other facts can you link to this one? What other times tables will help you with this times table?	Children use prior knowledge of multiplication facts for 2, 3, 4 and 5 times tables (from prior learning), along with distributive law in order to calculate unknown multiplication facts.	

