Year 3 Maths Autumn medium Term plan

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn	Numt	oer: Place	Value	Nui	nber: Ado	dition and	l Subtrac	tion		er: Multipl nd Divisio		Consolidation

		Number: Pl	ace Value	
NC objecti	ives:			
 Identify, 	represent and estimate nu	mbers using different representations.		
•Find 10 o	or 100 more or less than a g	iven number.		
 Recognis 	e the place value of each d	igit in a three-digit number (hundreds, tens, on	es).	
-	e and order number up to 1			
) in numerals and in words.		
		al problems involving these ideas.		
	om 0 in multiples of 4, 8, 50			-
Week	Small step	Key Questions	Notes and Guidance	Assessment
	Hundreds	How many tens have you made?	Children build on their understanding of	
		How else can we say this?	tens and link this to 100. This is the first	
		What do these digits mean/represent?	time they explore 100 explicitly.	
		How many ones have you made?	It is crucial children understand that ten	
		How else can you say this?	tens make 100 and a hundred ones make	
		If we continue counting in tens, what do	100	
		we say after 100?	They use a variety of concrete equipment	
		What numbers wouldn't we say?	to see this relationship.	
			Once children understand the concept of	
			100, they will count objects and numbers	
			in multiples of 100 up to 1,000	
	Represent numbers	Does it matter which order you build	In this small step, children will primarily	
	to a 1000	the number in?	use Base 10 to become familiar with any	
		Can you have more than 9 of the same	number up to 1,000	

	object? E.g. 11 tens.	Using Base 10 will emphasise to children	
	Do you prefer using the Base 10 or	that hundreds are bigger than tens and	
	drawing the Base 10? Why?	tens are bigger than ones.	
	Can you create a part-whole model	Children need to see numbers with zeros	
	using or drawing Base 10 in each circle?	in different columns, and show them with	
		concrete and pictorial representations.	
100s, 10s and 1s (Children should understand that a 3-digit	
	on the place value chart?	number is made up of 100s,10s and 1s.	
	Why is it important to put the values	They read numbers shown in different	
	into the correct column on the place	representations on a place value grid, and	
	value chart?	write them in numerals. They should be	
	How many more are needed to	able to represent different 3-digit numbers	
	complete the place value chart?	in various ways such as Base 10 or	
	Can you make your own numbers for a	numerals.	
	friend using Base 10?		
100s, 10s and 1s (2) What is the same and what is different	Children use place value counters to	
	about Base10 and PV counters?	represent different numbers and	
	Why do we not call this number	understand how a number is made. Their	
	300506?	work with Base 10 should help them	
	What number would be shown if	understand that the hundreds counter is	
	1/10/100 was added?	worth more than the tens counter and the	
	Why is it important to put the values	tens counter is worth more than the ones	
	into the correct column on the place	counter.	
	value grid?		
	What do we need to do if there is a zero		
	in the number we are representing?		
Number line to 10		What intervals do the number lines go up	
	numbers on a number line. Number	in?	
	lines should be shown with or without	Which side of the number line did you	
	start and end numbers, and with	start from? Why?	
	numbers already placed on it.	When estimating where a number should	
		be placed, what facts can help you?	
		Can you draw a number line where 600 is	

Find 1, 10, 100 more or less than a given number.	What is 10 more than/less than? What is 100 more than/less than? Which column changes? What happens when I subtract 10 from 209	the starting number, and 650 is half way along? What value can A definitely not be? How do you know? Building on children's learning in Year 2 where they explored finding one more/less, children now move onto finding 10 and 100 more or less than a given number. Show children that they can represent their answer in a variety of different ways. For example, as numerals or words, or with concrete manipulatives.	
Compare objects to 1000	How do you know which number is greater? Do you start counting hundreds, tens or ones first? Why? What strategy did you use to compare the two numbers? Is this the same or different to your partner? Are the Base 10 and place value counters showing the same amount? How do you know? Is there only one answer?	Children use objects to represent numbers to 1,000 When given two numbers represented by objects, they use comparison language and symbols to determine which is greatest and which is smallest. Children can make the numbers using concrete manipulatives and draw them pictorially. Use stem sentences to ensure the correct vocabulary is being used e.g is greater than	
Compare numbers to 1000	What strategy did you use to compare the numbers? How do you know which number is the greatest? Which column do you start comparing from? Why? Can you find more than one way to complete the statements?	Children compare numbers as digits rather than objects. They need to be encouraged to use previous learning to choose an efficient method to compare the numbers. For example, children may choose to place the numbers on a number line, make them in concrete or draw them in a place value chart to compare.	
Order numbers	How do you know you have created the	Children explore ordering a set of numbers	

		greatest/smallest number?	from smallest to greatest and greatest to	
		What number is being represented by	smallest. They need to be able to explain	
		the place value counters/Base 10?	their reasoning throughout. At this point,	
		What does the word	children are introduced to the words	
		ascending/descending mean?	ascending and descending.	
		Can you find more than one way to		
		order your numbers?		
	Count in 50's	What is the same and what is different	Children use their knowledge of the	
		between counting in 5s and counting in	patterns in the 5 times table to count in	
		50s?	steps of 50 They should start from any	
		Hence, what is the connection between	given multiple of 50 and be able to count	
		the 5 times table and the 50 times	both forwards and backwards.	
		table?		
		Can you notice a pattern as the		
		numbers increase/decrease?		
		Can you correct the mistakes in each?		
	•	Addition and	Subtraction	
NC Objectiv	ves:			
•Add and s	ubtract numbers ment	ally, including: a three-digit number and or	nes; a three-digit number and tens; a three-d	igit number and hundreds.
			thods of columnar addition and subtraction.	-
		tion and use inverse operations to check ar		
		•	lace value, and more complex addition and s	ubtraction
-	Add and Subtract	What is the same and what is different	Children are introduced to numbers	
	multiples of 100	about 2 ones and 3 ones, 2 tens and 3	greater than 100 They will apply their prior	
		tens and 2 hundreds and 3 hundreds?	knowledge of adding and subtracting ones	
		What is hundreds and	and tens to adding and subtracting	
		hundreds equal to?	multiples of 100 Using concrete	
		How many different ways can you	manipulatives and pictorial	
		represent 200 + 300?	representations throughout is important	
			so the children can see the value of	
			hundreds.	
	Add and subtract 3	Which column do I need to focus on?	During this small step, children add and	
	digit and 1 digit	Do we need to make and use the whole	subtract ones from a 3-digit number.	
		be the field to finake and use the whole		

numbers= not	number? Why?	Children don't exchange or cross the ten,
crossing 10	How can you explain your method? Is	so they can build number sense. For
01000118 20	there another way of checking?	example, if a child is completing $214 - 3$
	What do we do when there are no ones	and 214 +3 they should learn that they can
	left?	ignore the hundreds and tens at this stage.
	Can you use <and>to compare Sam and</and>	Therefore, all they need to do is 4 +3 and 4
	Tim's team points?	- 3 respectively. The use of the column
		method can be used but mental arithmetic
		is the best strategy.
Add 3 digit and 1	When you add ones to a number does it	Children add ones to a 3-digit number,
digit numbers –	always, sometimes or never affect the	with an exchange. They must understand
crossing 10	tens column?	that when adding ones it can affect the
	What is the largest number you can	ones column and the tens column.
	have in each column? Why?	Children must also know that we can only
		hold single digits in each column, anything
		over must be exchanged. The use of 0, e.g.
		145 –5 is important so they know to use
		zero as a place holder
Subtract a 1 digit	How can we partition the number 321?	Children subtract a 1-digit number from a
number from a 3	How else could we partition it to make	3-digit number using an exchange.
digit number –	it easier to subtract 4?	Children need to be secure in the fact that
crossing 10	What calculation is the word problem	321 is 3 hundreds, 2 tens and 1 one but
	representing?	that it is also 3 hundreds, 1 ten and 11
	What does each number represent in	ones. If children are not secure on
	the word problem?	
		regrouping, it is important to revisit this before subtracting.
Add and subtract 3	How else can you represent this	Children look at what happens to a 3-digit
digit and 2 digit – not	calculation?	number when a multiple of 10 is added or
crossing 100	Do we need to make this number?	subtracted. Different representations such
	How is the similar and different to	as Base 10, arrow cards, place value charts
	subtracting ones?	should be used. The use of the column
	What do you notice about the columns	method is exemplified in this example, but
	-	
	that change?	children should explore whether or not

	Why don't we have to calculate for each? Give a reason.	this is needed and explain why. Mental methods should be encouraged throughout.	
Add 3 digit and 2 digit numbers – crossing 100	How many tens do we have? What can we do with the tens? If we know how to count in tens, do we always need to use the column method or other methods? Would it be easier for us to just count up in our heads?	Children add multiples of 10, to a 3-digit number with an exchange. They will recognise that when adding tens, it can change the tens and hundreds column. The column addition method has not been used within this small step because it is not the most efficient method. Children should be counting in tens. Draw on knowledge of inverse to be able to work out missing number problems.	
Subtract a 2 digit number from a 3 digit number crossing 100	How can we use the number line? Why are the numbers 23 and 57 shown on the part-whole model? Is there another question we can use to test this strategy?	Children subtract multiples of 10 from a 3- digit number, with an exchange. The examples show different ways this concept could be taught using number lines and part whole models. The column method could be used, however, it is not the most efficient method. Counting backwards in tens or using 100 to help will support mental strategies	
Add and subtract 100s	What do you notice when we add and subtract 100s from a 3 digit number? What is the calculation that matches the word problem? What does each number in your calculation represent? Is there more than one way to complete the questions?	Children build on their knowledge of adding 100s together, e.g. 300 +500 by adding ones and tens to solve calculations such as 234 +500 It is important to build 'number sense' and ask the children why the column method isn't the most effective method to solve questions like the ones modelled. We can 'bypass' the tens and ones column because of the zeros in 500	
Spot the pattern-	What do you notice? Which strategy	Children consolidate adding ones, tens and	

making it explicit	can we use to add these numbers? Do we need to write a zero in the hundreds column when there are no	hundreds to 3digit numbers. It is important in this step that children don't end up with the misconception that	
	hundreds left? Do we always need to work out each calculation or can we use what we already know?	adding and subtracting ones only affects the ones column, because they need to identify it can affect the tens column too	
Add and subtract a 2 digit and 3 digit number – crossing 10 or 100	Where would these digits go on the place value chart? Why? When we subtract, why do we not make both numbers? Why do we make both numbers when we add? Can you represent using the equipment?	Children focus on the position of numbers and place value to add and subtract 2-digit and 3-digit numbers. The use of concrete equipment will support understanding at this stage.	
Subtract a 2 digit number from a 3 digit number crossing 10 0r 100	What happens when we have 10 ones? Can we exchange them for anything? Why? Where does this ten go? How does that help us? What happens when we have 10 tens? Can we exchange them for anything? Why? Where does this hundred go? How does that help us?	Children add 3 and 2 digit numbers that cross both the 10 and 100 barrier. They build upon the previous small steps and the concept of 'exchange' is explored. They focus on the position of numbers and place value. The placement of numbers is also key, i.e. 'Does it matter which number goes on top?' The use of concrete equipment will support understanding at this stage.	
Add two 3 digit numbers – not crossing 10 or 100	What happens when we are subtracting more ones than we have? Can we exchange anything? (1 ten for 10ones) Where do the 10 ones go? How does this help us solve the problem? What happens if there are ones remaining after exchanging for 1 ten?	Children focus on the position of numbers and place value to subtract 2-digits from 3- digits using the column method. The term 'exchange' will be key and understanding of place value will help children to recognise when they should be exchanging.	

Add two 3 digit	Where would these digits go on the	Childron add two 2 digit numbers with no	,
u u u u u u u u u u u u u u u u u u u		Children add two 3-digit numbers with no	
numbers – crossing	place value chart? Why?	exchange. Use of place value counters	
10 or 100	Why do we make both numbers when	builds on children's understanding of Base	
	we add?	10 equipment, as the individual units can	
	Can you represent using the	no longer be seen.	
	equipment?		
	Can you draw a picture to represent		
	this?		
	Why is it important to put the digits in		
	the correct column?		
Subtract a 3 digit	Where would these digits go on the	Children continue to add two 3-digit	
number from a 3	place value chart? Why?	numbers, this time where an exchange is	
digit number – no	Why do we make both numbers when	required.	
exchange	we add?	Use of place value counters builds on	
	Can you represent using the	children's understanding of Base 10	
	equipment?	equipment, as the individual units can no	
	Can you draw a picture to represent	longer be seen.	
	this?		
	Why is it important to put the digits in		
	the correct column?		
Subtract a 3 digit	Which method would you use for this	Children explore column subtraction using	
number from a 3	calculation and why?	concrete manipulatives. It is important to	
digit number -	What happens when you can't subtract	show the column method alongside so	
exchange	9 from 7? 50 from 30 etc.	that children make the connection to the	
	How would you teach somebody else to	abstract and understand what is	
	use column subtraction with exchange?	happening.	
	Why do we exchange? When do we		
	exchange?		
Estimate answers to	What would you estimate this to be?	Children check how reasonable their	
calculations	Why did you choose this number?	answers are. While rounding is not	
	Why is/isn't this a sensible estimation	formally introduced until Year 4, it is	
	to an answer?	helpful that children can refer to 'near	
	How did they work out this answer?	numbers' to see whether an estimate is	

		Could you do it in a different/better way?	sensible.	
Ch	ieck	How can you tell if your answer is sensible? Does knowing if a number is close to a multiple of 100 help when adding and subtracting 3-digitnumbers? How does it help? Does it help to check your answer if you spot which numbers are near to multiples of 10? How does counting 10s, 50s and 100shelp?	Children explore ways of checking to see if an answer is reasonable. Checking using inverse is to be encouraged so that children are using a different method and not just potentially repeating an error, for example, if they add in a different order.	
		Multiplication	and Division	
numbers times •Solve problen	s one-digit numbers, ns, including missing	using mental and progressing to formal w	on and division, including positive integer sca	
M	ultiplication –equal oups	What is the same and what is different between each of the groups? What does the 3 represent? What does the 8 represent? How can we represent the groups?	Children recap their understanding of recognising, making and adding equal groups. This will allow them to build on prior learning and prepare them for the next small steps.	
M	ultiply by 3	How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture?	Children draw on their knowledge of counting in threes in order to start to multiply by 3 They use their knowledge of equal groups to use concrete and pictorial methods to solve multiplication.	

Divide	e by 3	Can you use concrete apparatus to solve the problem? How many lots of 3 do we have? How many groups of 3 do we have? Can you group the numbers in threes? Can you share the number into three groups? What is the difference between sharing and grouping?	Children explore dividing by 3 through sharing into three groups and grouping in threes. They use concrete and pictorial representations and use their knowledge of the inverse to check their answers.	
The 3	x table	Can you use concrete or pictorial representations to help you? What other facts can you link to this one? What other times tables will help you with this times table?	Children draw together their knowledge of multiplying and dividing by three in order to become more fluent in the three times table. Children apply their knowledge to different contexts	
Multi	ply by 4	How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture? Can you use concrete apparatus to solve the problem? How many lots of 4 do we have? How many groups of 4 do we have?	Building on their knowledge of the two times table, children start to multiply by four. They link to the idea of doubling the number and doubling again. They link multiplying by four to repeated addition and counting in fours. To show the multiplication of four, teachers may use Numicon, cubes, counters, bar models etc.	
Divide	e by 4	Can you group the numbers in fours? Can you share the number into four groups? What is the difference between sharing and grouping?	Children explore dividing by 4 through sharing into four groups and grouping in fours. They use concrete and pictorial representations and their knowledge of the inverse to check their answers.	
The 4	x table	What do you notice about the pattern? Can you use concrete or pictorial	Children use knowledge of known multiplication tables (2, 3, 5 and 10 times	

	representations to help you? What other facts can you link to this	tables) and understanding of key concepts of multiplication. Children who have learnt	
	one?	$3 \times 4 = 12$ can use understanding of	
	What other times tables will help you	commutativity to know $4 \times 3 = 12$	
	with this times table?		
Multiply by 8	 How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture? Can you use concrete apparatus to solve the problem? How many lots of 8 do we have? How many groups of 8 do we have? We have 8 groups, how many are in each group? 	Building on their knowledge of the four times table, children start to multiply by eight. They link to the idea of doubling the number twice and then doubling again. They link multiplying by eight to previous knowledge of equal groups and repeated addition. Children explore the concept of multiplying by 8 in different ways; when 8 is the multiplicand and where 8 is the multiplier.	
Divide by 8	What concrete/pictorial representations might help you? Can you group the numbers in eights? Can you share the number into eights groups? Can you use any prior knowledge to check your answer?	Children explore dividing by 8 through sharing into eight groups and grouping in eights. They use concrete and pictorial representations and their knowledge of inverse operations to check their answers	
The 8 x table	Why is it helpful to partition the number you are multiplying by?Can you use concrete or pictorial representations to help you?What other facts can you link to this one?What other times tables will help you with this times table?	Children use prior knowledge of multiplication facts for 2, 3, 4 and 5 times tables (from prior learning), along with distributive law in order to calculate unknown multiplication facts.	