Year 3 Maths Spring medium Term plan

Spring	Number: Multiplication and Division	Measurement: Money	Statistics	Measurement: Length and Perimeter	Number: Fractions
--------	--	-----------------------	------------	--------------------------------------	----------------------

Multiplication and Division

NC Objectives:

•Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.

•Write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods.

•Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Week	Small step	Key Questions	Notes and Guidance	Assessment
	Comparing	What other number sentences does the	Children use their knowledge of	
	Statements	array show?	multiplication and division facts to	
		If you know your 4 times-table, how can	compare statements using inequality	
		you use this to work out your 8 times-	symbols.	
		table?	It is important that children are exposed to	
		What's the same and what's different	a variety of representations of	
		about 8 × 3 and 7 × 4?	multiplication and division, including	
			arrays and repeated addition.	
	Related calculations	What is the same and what is different	Children use known multiplication facts to	
		about the place value counters?	solve other multiplication problems. They	
		How does this fact help us solve this	understand that because one of the	
		problem?	numbers in the calculation is ten times	
		If we know these facts, what other facts	bigger, then the answer will also be ten	
		do we know?	times bigger. It is important that children	
		Can you prove your answer using	develop their conceptual understanding	
		manipulatives?	through the use of concrete manipulatives.	
	Multiply 2 digits by 1	How does multiplication link to	Children use their understanding of	

digit (1)	addition?	repeated addition to represent a two-digit	
	How does partitioning help you to	number multiplied by a one-digit number	
	multiply 2-digits by a 1-digit number?	with concrete manipulatives. They use the	
	How does the written method match	formal method of column multiplication	
	the concrete representation?	alongside the concrete representation.	
		They also apply their understanding of	
		partitioning to represent and solve	
		calculations. In this step, children explore	
		multiplication with no exchange.	
Multiply 2 digits by 1	What happens when we have ten or	Children continue to use their	
digit (2)	more ones in a column?	understanding of repeated addition to	
	What happens when we have twenty	represent a two-digit number multiplied	
	or more ones in a column?	by a one digit number with concrete	
	How do we record our exchange?	manipulatives. They move on to explore	
	Do you prefer Jack's method or Amir's	multiplication with exchange. Each	
	method?	question in this step builds in difficulty.	
	Can you use either method for all the calculations?		
Divide 2 digits by 1	How can we partition the number?	Children divide 2-digit numbers by a 1-digit	
digit (1)	How many tens are there?	number by partitioning into tens and ones	
	How many ones are there?	and sharing into equal groups.	
	What could we use to represent this	They divide numbers that do not involve	
	number?	exchange or remainders.	
	How many equal groups do I need?	It is important that children divide the tens	
	How many rows will my place value	first and then the ones.	
	chart have?		
	How does this link to the number I am		
	dividing by?		
Divide 2 digits by 1	Why have we partitioned 42 into 30 and	Children divide 2-digit numbers by a 1-digit	
digit (2)	12 instead of 40 and 2?	number by partitioning into tens and ones	
	What do you notice about the	and sharing into equal groups.	
	partitioned numbers and the divisor?	They divide numbers that involve	
	Why do we partition 96 in different	exchanging between the tens and ones.	

	ways depending on the divisor?	The answers do not have remainders.	
		Children use their times-tables to partition	
		the number into multiples of the divisor.	
Divide 2 digits by 1	How do we know 13 divided by 4 will	Children move onto solving division	
digit (3)	have a remainder?	problems with a remainder. Links are	
	Can a remainder ever be more than the	made between division and repeated	
	divisor?	subtraction, which builds on learning in	
	Which is your favourite method?	Year 2 Children record the remainders as	
	Which methods are most efficient with	shown in Tommy's method. This notation	
	larger two digit numbers?	is new to Year 3 so will need a clear	
		explanation.	
Scaling	Why might someone draw the first bar	It is important that children are exposed to	
	model?	problems involving scaling from an early	
	What have they misunderstood?	age. Children should be able to answer	
	What is the value of Amir's counters?	questions that use the vocabulary "times	
	How do you know?	as many". Bar models are particularly	
	How many adults are at the concert?	useful here to help children visualise the	
	How will you work out the total?	concept. Examples and non-examples	
		should be used to ensure depth of	
		understanding.	
How many ways?	What are the names of the shapes on	Children list systematically the possible	
	the shape cards?	combinations resulting from two groups of	
	How do you know you have found all of	objects. Encourage the use of practical	
	the ways?	equipment and ensure that children take a	
	Would making a table help?	systematic approach to each problem.	
	Without listing, can you tell me how	Children should be encouraged to	
	many possibilities there would be if	calculate the total number of ways without	
	there are 5 different shape cards and 4	listing all the possibilities. e.g. Each T-shirt	
	different number cards?	can be matched with 4 pairs of trousers so	
		altogether 3 × 4 = 12 outfits.	

•Add and subtract amounts of money to give change, using both £ and p in practical contexts.

Pounds and Pence	What is the value of the coin/note?	Children need to know the value of each	
	What does p mean?	coin and note and understand what these	
	Why do we have different values of	values represent. They should understand	
	coins and notes?	that money can be represented in	
		different ways but still have the same	
		value. Children will need to be able to add	
		coin values together to find the total	
		amount.	
Converting pounds	How many pennies are there in £1?	Children convert between pounds and	
and pence	How can this fact help us to convert	pence using the knowledge that £1 = 100 p	
	between pounds and pence?	Children group pence to make pounds	
	Explain what you need to do to convert	when counting money. They apply their	
	pounds to pence.	place value knowledge and use their	
	Explain how you convert pence to	number bonds to 100	
	pounds.		
Adding Money	What number facts could you use to	Children build on their understanding of	
	calculate mentally?	different coins and their knowledge of	
	What would be the most efficient way	converting. Children use their	
	to group the coins? (E.g. 20 p + 20 p +	understanding of the value of each coin	
	10 p = 50)	before they start to add across a pound	
	Can you group any of the coins to make	boundary. When adding across a pound	
	a pound?	boundary children should be encouraged	
	Can you partition any of the amounts to	to look for number bonds (E.g. 70 p and 30	
	help you?	p), or ways to partition numbers	
	Do we need to think of a different way	differently to make a pound.	
	to partition?		
	How many different ways can you		
	make a pound?		
Subtracting money	How many more to the next ten?	Children develop their knowledge of the	
	When is the partitioning method not	value of coins from Year 2 and use number	
	efficient?	lines to solve subtraction problems	
	Which number should I place on the	involving money. They continue to make	
	number line first?	connections between place value and	

	Shall we count on or back on the	money. Children use a number line to	
	number line?	count on to help finding change. They may	
		also explore other methods and compare	
		which is most efficient.	
Giving change	What do we mean by 'change' in the	Children use their subtraction skills with	
	context of money?	money to calculate change. They continue	
	Why do we partition to give change?	to use a number line and a part whole	
	Which method do you find most	model to support their calculations.	
	effective?	Children apply previous skills and	
		knowledge to contextual problems.	
	Stat	istics:	
<mark>NC Objectives:</mark>			
Interpret and present data u	sing bar charts, pictograms and tables.		
Solve one-step and two-step	questions [for example, 'How many more?'	and 'How many fewer?'] using information pres	ented in scaled bar charts
nd pictograms and tables.			
Pictograms	What is each symbol worth?	Children will build on prior understanding	
	How does the pictogram help you	of pictograms from Year 2. They continue	
	understand the information?	to read and interpret information from	
	Which is the greatest amount?	pictograms, make comparisons and ask	
	Which is the smallest amount?	questions about data. It is important that	
	What other questions could you ask	children understand the value of each	
	about the pictogram?	symbol used and what it means when half	
		a symbol is used.	
Bar Charts	How is a bar chart similar to a	Children draw bar charts from information	
	pictogram?	given in pictograms and tables. They	
	How does the bar chart help you	interpret information from bar charts and	
	understand the information?	ask and answer questions relating to the	
	Which scale should we use?	data. Children read and interpret bar	
	How do we know whether to have a	charts with scales of 1, 2, 5 and 10. They	
		decide which scale will be the most	
	scale going up in 1, 2, 5 or 10?	decide which scale will be the most	
	scale going up in 1, 2, 5 or 10?	appropriate when drawing their own bar	
	scale going up in 1, 2, 5 or 10?		

		The state that the ball of the		
		How does the table help you	to answer both one and two-step	
		understand the information?	problems. They use their addition and	
		What other questions could I ask and	subtraction skills to answer questions	
		answer using the information in the	accurately and ask their own questions	
		table?	about the data in tables.	
		Measurement: Leng	gth and Perimeter	
NC Objectiv	ves:			
•Measure,	compare, add and subt	ract: lengths (m/cm/mm); mass (kg/g); vo	lume/capacity (l/ml).	
Measure	the perimeter of simple	2D shapes.		
	Measure length	What would be the best equipment to	Children are introduced to millimetres for	
		measure X with? (e.g. tape measure,	the first time and build on their	
		ruler, metre stick)	understanding of centimetres and metres.	
		Look at each side of different	It is important that child have a variety of	
		measuring equipment – what's the	hands on experiences and opportunities to	
		same, what's different?	explore the concept of a millimetre.	
		What do we have to remember when		
		using a ruler to measure?		
		Which side are we going to use to		
		measure?		
		What unit of measure would we use to		
		measure X?		
		What should you do if it the object does		
		not start from 0?		
	Equivalent lengths –	If there are 100 cm in 1 metre, how	Children understand that 100 cm is	
	m and cm	many centimetres would there be in 2	equivalent to 1 m. Once they are secure	
		metres?	with this, they can start to convert	
		How many centimetres in 3 metres?	between metres and centimetres by	
		How many other equivalents can you	partitioning.	
		think of?		
		Can you explain how you are		
		partitioning each measurement?		
		Could you partition it in any other way?		
		Why is it most effective to partition the		

		hundreds and then the tens and ones?		
	Caulualant lawaths		Children understand that 10 mm is	
	Equivalent lengths –	If there are 10 mm in 1 cm, how many		
	mm and cm	mm would there be in 2 cm?	equivalent to 1 cm Once they are secure	
		Can you explain how you are	with this, they can start to convert	
		partitioning each number?	between centimetres and millimetres by	
		Can you partition it any other way?	partitioning	
		Why is it most effective to partition the		
		hundreds and then the tens and ones?		
	Compare lengths	Can you order the children's' heights	Children compare and order lengths based	
		from shortest to tallest?	on measurements in mm, cm and m. They	
		How could you make it easier to	use their knowledge of converting	
		compare and order these	between units of measurement to help	
		measurements?	them compare and order.	
		Estimate whose tower you think will be		
		the tallest. Explain why.		
	Add lengths	How did you add the distances travelled	Children add lengths including examples	
		by Olivia?	where there are mixed units and they	
		Can you think of a different way?	need to convert. Children to be	
		Which way do you think is the most	encouraged to look for the most efficient	
		efficient?	way to calculate and develop their mental	
		How did you find the total of their	addition strategies.	
		heights?		
		Was there a more efficient way of doing		
		this?		
		Explain how you added the lengths.		
	Subtract lengths	What is the difference between the	Children subtract lengths including	
	-	length of the two objects?	examples where there are mixed units and	
		How would you work it out?	they need to convert. Children should be	
		How are Poppy's models different?	encouraged to look for the most efficient	
		How are they the same?	way to calculate and develop their mental	
		Which model do you prefer? Why?	subtraction strategies.	
		What is the most efficient way to	Č	
		subtract mixed units?		
·	1		1	1

	Measure Perimeter	What is perimeter?	Children are introduced to perimeter for	
		Show me the perimeter of	the first time. They explore what	
		Which of the images can we work out	perimeter is and what it isn't. Children	
		the perimeter for?	measure the perimeter of simple 2D	
		Which ones can we not? Why?	shapes. They may compare different 2D	
		Which shape do you predict will have	shapes which have the same perimeter.	
		the longest perimeter? Why?	Children make connections between the	
		Does it matter where you start when	properties of 2D shapes and measuring the	
		you measure the length of the	perimeter.	
		perimeter?		
		What do you notice about the		
		perimeter of the rectangle and the		
		square?		
	Calculate Perimeter	How can we calculate the perimeter of	Children use their understanding of the	
		each shape?	properties of shape to calculate the	
		Can we calculate the perimeter using a	perimeter of simple 2D shapes. It is	
		different method?	important to note they will not explore the	
		What is the same about the 2	formula for a rectangle at this point. They	
		methods?	explore different methods for calculating	
		What is different?	the perimeter of a shape. For example,	
		How can we work out the length of the	they may use repeated addition or they	
		missing side?	may make connections to multiplication.	
		Fracti	ons:	
NC Objectiv	<mark>/es:</mark>			
•Count up a	and down in tenths			
•recognise	that tenths arise from	dividing an object into 10 equal parts and i	in dividing one-digit numbers or quantities by	/ 10
-		umbers: unit fractions and non-unit fraction		
•Recognise	e, find and write fractio	ns of a discrete set of objects: unit fractior	ns and non-unit fractions with small denomin	ators.
-	blems that involve all o	-		
· · ·	Unit and non-unit	What is a unit fraction?	Children recap their understanding on unit	
	fractions	What is a non-unit fraction?	and non-unit fractions from Year 2. They	
		In the representation, what is the unit	explain the difference between a unit and	
		fraction shown? What is the non-unit	non unit fraction. Children look at unit and	
		1	1	

	fraction shown?	non-unit fractions of shapes and amounts.	
Making the whole	What fraction is represented?	Children begin by counting up or down in	
-	What fraction is equivalent to the	fractions to make the link with the whole.	
	whole?	They look at the whole of shapes and	
	What fraction of the apples are green,	quantities and see that when a fraction is	
	what fraction are red?	equivalent to a whole, the numerator and	
	What fractions make the whole?	denominator are the same.	
	Could we represent the fractions of		
	apples in a part whole model?		
Tenths	How many tenths are shaded?	Children explore what a tenth is. They	
	How many more tenths do I need to	recognise that tenths arise from dividing	
	make a whole?	one object into 10 equal parts. Children	
	When I am writing tenths, the	represent tenths in different ways and use	
	is always 10	words and fractions to describe them. For	
		example, one tenth and 1 /10	
Count in Tenths	Let's count in tenths. What comes next?	Children count up and down in tenths.	
	Explain how you know. If I start at	They continue to represent tenths in	
	tenths, what will be next?	multiple ways and to use words and	
	What tenth comes between and	fractions to describe them. For example,	
	?	one tenth and 1/ 10 Children also explore	
	When we get to 10/10 what else can we	what happens when counting past 10/10	
	say?	and link this to their understanding of	
 	What happens next?	wholes	
Tenths as decimals	What is a tenth?	Children are introduced to tenths as	
	How many different ways can we write	decimals for the first time. They compare	
	a tenth?	fractions and decimals written as words, in	
	What does equivalent mean?	fraction form and as decimals and link	
	What is the same and what is different	them to pictorial representations. Children	
	about decimals and fractions?	learn that the number system extends to	
		the right of the decimal point into the tenths column.	
Fractions of a	How can we count past 12		
number line	How can we count past 1?	Children use a number line to represent	
number inte	How many lines do you need to draw to	fractions beyond one whole. They count	

	split a number line/shape into quarters? In a fraction, what does the	forwards and backwards in fractions. Children need to know how to divide a	
	denominator tell us?	number line into specific fractions. i.e. when dividing into quarters, we need to ensure our number line is split into four	
		sections.	
Fractions of a set of objects (1)	Which operation is finding a fraction of an amount similar to? How many equal groups do we need? Which part of the fraction tells us this? How does the bar model help us?	Children find a unit fraction of an amount by dividing an amount into equal groups. They build on their understanding of division by using place value counters to find fractions of larger quantities including where they need to exchange tens for ones.	
Fractions of a set of objects (2)	What denominator tell us? What does the numerator tell us? What is the same and what is different about two thirds and two fifths? How many parts is the whole divided into and why?	Children need to understand the denominator of the fraction tell us how many equal parts the whole has been divided into. Eg. 1/3 means dividing the whole into 3 equal parts. They need to understand that the numerator tells them how many parts of the whole there are. Eg 2/ 3 means dividing the whole into 3 equal parts, then counting the amount in 2 of these parts.	
Fractions of a set of objects (3)	Can we represent the problem in a bar model? When finding 5/6, what will we need to do and why? What is the whole? How can we represent this problem?	Children will now apply their knowledge and understanding of fractions to solve problems in various contexts. They build and recap their understanding of different measures.	