Year 3 Maths Spring medium Term plan

NC Objectives:

\bullet Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.
\bullet Write and calculate mathematical statements for multiplication and division using the multiplication tables they know, including for twodigit numbers times one-digit numbers, using mental and progressing to formal written methods.
\bullet-Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Week	Small step	Key Questions	Notes and Guidance	Assessment
	Comparing Statements	What other number sentences does the array show? If you know your 4 times-table, how can you use this to work out your 8 times- table? What's the same and what's different about 8×3 and 7×4 ?	Children use their knowledge of multiplication and division facts to compare statements using inequality symbols. It is important that children are exposed to a variety of representations of multiplication and division, including arrays and repeated addition.	
	Related calculations	What is the same and what is different about the place value counters? How does this fact help us solve this problem? If we know these facts, what other facts do we know? Can you prove your answer using manipulatives?	Children use known multiplication facts to solve other multiplication problems. They understand that because one of the numbers in the calculation is ten times bigger, then the answer will also be ten times bigger. It is important that children develop their conceptual understanding through the use of concrete manipulatives.	
	Multiply 2 digits by 1	How does multiplication link to	Children use their understanding of	

digit (1)	addition? How does partitioning help you to multiply 2-digits by a 1-digit number? How does the written method match the concrete representation?	repeated addition to represent a two-digit number multiplied by a one-digit number with concrete manipulatives. They use the formal method of column multiplication alongside the concrete representation. They also apply their understanding of partitioning to represent and solve calculations. In this step, children explore multiplication with no exchange.	
Multiply digit (2)	What happens when we have ten or more ones in a column? What happens when we have twenty or more ones in a column? How do we record our exchange? Do you prefer Jack's method or Amir's method? Can you use either method for all the calculations?	Children continue to use their understanding of repeated addition to represent a two-digit number multiplied by a one digit number with concrete manipulatives. They move on to explore multiplication with exchange. Each question in this step builds in difficulty.	
Divide 2 digits b digit (1)	How can we partition the number? How many tens are there? How many ones are there? What could we use to represent this number? How many equal groups do I need? How many rows will my place value chart have? How does this link to the number I am dividing by?	Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups. They divide numbers that do not involve exchange or remainders. It is important that children divide the tens first and then the ones.	
digit (2)	Why have we partitioned 42 into 30 and 12 instead of 40 and 2 ? What do you notice about the partitioned numbers and the divisor? Why do we partition 96 in different	Children divide 2-digit numbers by a 1-digit number by partitioning into tens and ones and sharing into equal groups. They divide numbers that involve exchanging between the tens and ones.	

	ways depending on the divisor?	The answers do not have remainders. Children use their times-tables to partition the number into multiples of the divisor.	
Divide 2 digits by 1 digit (3)	How do we know 13 divided by 4 will have a remainder? Can a remainder ever be more than the divisor? Which is your favourite method? Which methods are most efficient with larger two digit numbers?	Children move onto solving division problems with a remainder. Links are made between division and repeated subtraction, which builds on learning in Year 2 Children record the remainders as shown in Tommy's method. This notation is new to Year 3 so will need a clear explanation.	
Scaling	Why might someone draw the first bar model? What have they misunderstood? What is the value of Amir's counters? How do you know? How many adults are at the concert? How will you work out the total?	It is important that children are exposed to problems involving scaling from an early age. Children should be able to answer questions that use the vocabulary "times as many". Bar models are particularly useful here to help children visualise the concept. Examples and non-examples should be used to ensure depth of understanding.	
How many ways?	What are the names of the shapes on the shape cards? How do you know you have found all of the ways? Would making a table help? Without listing, can you tell me how many possibilities there would be if there are 5 different shape cards and 4 different number cards?	Children list systematically the possible combinations resulting from two groups of objects. Encourage the use of practical equipment and ensure that children take a systematic approach to each problem. Children should be encouraged to calculate the total number of ways without listing all the possibilities. e.g. Each T-shirt can be matched with 4 pairs of trousers so altogether $3 \times 4=12$ outfits.	

Measurement: Money

NC Objectives

\bullet Add and subtract amounts of money to give change, using both $£$ and p in practical contexts.

| | | $\begin{array}{l}\text { Shall we count on or back on the } \\ \text { number line? }\end{array}$ | $\begin{array}{l}\text { money. Children use a number line to } \\ \text { count on to help finding change. They may } \\ \text { also explore other methods and compare } \\ \text { which is most efficient. }\end{array}$ |
| :--- | :--- | :--- | :--- | :--- |
| | Giving change | $\begin{array}{l}\text { What do we mean by 'change' in the } \\ \text { context of money? } \\ \text { Why do we partition to give change? } \\ \text { Which method do you find most } \\ \text { effective? }\end{array}$ | $\begin{array}{l}\text { Children use their subtraction skills with } \\ \text { money to calculate change. They continue } \\ \text { to use a number line and a part whole } \\ \text { model to support their calculations. } \\ \text { Children apply previous skills and } \\ \text { knowledge to contextual problems. }\end{array}$ |
| Statistics: | | | |$\}$

NC Objectives:

- Interpret and present data using bar charts, pictograms and tables.
-Solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.
$\left.\begin{array}{|l|l|l|l|l|}\hline & \text { Pictograms } & \begin{array}{l}\text { What is each symbol worth? } \\ \text { How does the pictogram help you } \\ \text { understand the information? } \\ \text { Which is the greatest amount? } \\ \text { Which is the smallest amount? } \\ \text { What other questions could you ask } \\ \text { about the pictogram? }\end{array} & \begin{array}{l}\text { Children will build on prior understanding } \\ \text { of pictograms from Year 2. They continue } \\ \text { to read and interpret information from } \\ \text { pictograms, make comparisons and ask } \\ \text { questions about data. It is important that } \\ \text { children understand the value of each } \\ \text { symbol used and what it means when half } \\ \text { a symbol is used. }\end{array} \\ \hline & \text { Bar Charts } & \begin{array}{l}\text { How is a bar chart similar to a } \\ \text { pictogram? } \\ \text { How does the bar chart help you } \\ \text { understand the information? } \\ \text { Which scale should we use? } \\ \text { How do we know whether to have a } \\ \text { scale going up in 1, 2, 5 or 10? }\end{array} & \begin{array}{l}\text { Children draw bar charts from information } \\ \text { given in pictograms and tables. They } \\ \text { interpret information from bar charts and } \\ \text { ask and answer questions relating to the } \\ \text { data. Children read and interpret bar } \\ \text { charts with scales of 1, 2,5 and 10. They } \\ \text { decide which scale will be the most } \\ \text { appropriate when drawing their own bar } \\ \text { charts. }\end{array} & \end{array}\right\}$

	How does the table help you understand the information? What other questions could I ask and answer using the information in the table?	to answer both one and two-step problems. They use their addition and subtraction skills to answer questions accurately and ask their own questions about the data in tables.	
Measurement: Length and Perimeter			
NC Objectives: - Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg / g); volume/capacity (l / ml). - Measure the perimeter of simple 2D shapes.			
Measure length	What would be the best equipment to measure X with? (e.g. tape measure, ruler, metre stick) Look at each side of different measuring equipment - what's the same, what's different? What do we have to remember when using a ruler to measure? Which side are we going to use to measure? What unit of measure would we use to measure X? What should you do if it the object does not start from 0?	Children are introduced to millimetres for the first time and build on their understanding of centimetres and metres. It is important that child have a variety of hands on experiences and opportunities to explore the concept of a millimetre.	
Equivalent lengths m and cm	If there are 100 cm in 1 metre, how many centimetres would there be in 2 metres? How many centimetres in 3 metres? How many other equivalents can you think of? Can you explain how you are partitioning each measurement? Could you partition it in any other way? Why is it most effective to partition the	Children understand that 100 cm is equivalent to 1 m . Once they are secure with this, they can start to convert between metres and centimetres by partitioning.	

| | Measure Perimeter | What is perimeter?
 Show me the perimeter of...
 Which of the images can we work out
 the perimeter for?
 Which ones can we not? Why?
 Which shape do you predict will have
 the longest perimeter? Why?
 Does it matter where you start when
 you measure the length of the
 perimeter?
 What do you notice about the
 perimeter of the rectangle and the
 square? | Children are introduced to perimeter for
 the first time. They explore what
 perimeter is and what it isn't. Children
 measure the perimeter of simple 2D
 shapes. They may compare different 2D
 shapes which have the same perimeter.
 Children make connections between the
 properties of 2D shapes and measuring the
 perimeter. |
| :--- | :--- | :--- | :--- | :--- |
| | Calculate Perimeter | | |

	split a number line/shape into quarters? In a fraction, what does the denominator tell us?	forwards and backwards in fractions. Children need to know how to divide a number line into specific fractions. i.e. when dividing into quarters, we need to ensure our number line is split into four sections.	
Fractions of a set of objects (1)	Which operation is finding a fraction of an amount similar to? How many equal groups do we need? Which part of the fraction tells us this? How does the bar model help us?	Children find a unit fraction of an amount by dividing an amount into equal groups. They build on their understanding of division by using place value counters to find fractions of larger quantities including where they need to exchange tens for ones.	
Fractions of a set of objects (2)	What denominator tell us? What does the numerator tell us? What is the same and what is different about two thirds and two fifths? How many parts is the whole divided into and why?	Children need to understand the denominator of the fraction tell us how many equal parts the whole has been divided into. Eg. 1/3 means dividing the whole into 3 equal parts. They need to understand that the numerator tells them how many parts of the whole there are. Eg. . 2/ 3 means dividing the whole into 3 equal parts, then counting the amount in 2 of these parts.	
Fractions of a set of objects (3)	Can we represent the problem in a bar model? When finding 5/ 6 , what will we need to do and why? What is the whole? How can we represent this problem?	Children will now apply their knowledge and understanding of fractions to solve problems in various contexts. They build and recap their understanding of different measures.	

