Year 4: Medium Term Plans

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12
Autumn		Number –	Place Val	ue		er- Additio Subtractio		Measurement - Length and Perimeter	Numbe a	er- Multip nd Divisio		Consolidation

Number – Place Value

•Count in multiples of 6, 7, 9. 25 and 1000.

•Find 1000 more or less than a given number.

•Recognise the place value of each digit in a four digit number (thousands, hundreds, tens and ones)

•Order and compare numbers beyond 1000

•Identify, represent and estimate numbers using different representations.

•Round any number to the nearest 10, 100 or 1000

•Solve number and practical problems that involve all of the above and with increasingly large positive numbers.

•Count backwards through zero to include negative numbers.

•Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.

Week	Small steps	Key Questions	Notes and Guidance	Assessment
	Roman numerals to 100	Why is there no zero in the Roman Numerals? What might it look like? Do you notice any patterns? If 20 is XX what might 200 be? How can you check you have represented the Roman Numeral correctly?	Building on their Year 3 knowledge of numerals to 12 on a clock face, children explore Roman Numerals to 100 They explore what is the same and what is different between the number systems, for example there is no zero.	
	Round to the nearest 10	What is a multiple of 10?	Starting with two digit numbers, children	
		Which multiples of 10 does sit	look at the position of a number on a	

	between? Which column do we look at when rounding to the nearest 10? Which number is being represented? Will we round it up or down? Why?	number line. They apply their understanding to three digit numbers, focusing on the number of ones and rounding up or down. Highlight the importance of five and the idea that although it is in the middle of the two numbers, the number is always rounded up.	
Round to the nearest 100	How is rounding to the nearest 100 similar and different to the nearest 10? Which column do we need to look at when rounding to the nearest 100? Why do numbers up to 49 round down to the nearest 100 and numbers 50 to 99 round up?	Children compare rounding to the nearest 10 (looking at the ones column) to rounding to the nearest 100 (looking at the tens column). Children use their knowledge of multiples of 100, and understanding of which hundreds a number sits between, to help them round.	
Count in 1,000s	How many hundreds make thousands? How is counting in thousands similar to counting in 1s? When counting in thousands, which is the only digit to change? How many sweets would there be in jars?	Children look at four-digit numbers for the first time. They explore what a thousand is through concrete and pictorial representations, recognising that 1,000 is made up of ten hundreds. They count in multiples of 1,000 combining numerals and words.	
1,000s, 100s, 10s and 1s	Can you represent the number on a place value grid? How do you know you have formed the number correctly? What could you use to help you? How is the value of zero represented within a number?	Children represent numbers to 9,999on a place value grid and understand that a four- digit number is made up of 1,000s, 100s, 10s and 1s. Moving on from Base 10 blocks, children start to unitise by using place value counters and digits.	

Partitioning	What number is being represented?	Children explore how numbers can be	
ratitioning	If we have 10 hundreds, can we	broken apart in more than one way.	
	exchange them for something?	They need to understand that $5000 + 300$	
	If you know ten 100s are equal to	+20 + 9 is equal to 4000 $+1300 + 10 + 19$ is	
		•	
	1000 and ten 10s are equal to 100,	crucial; children explore this explicitly.	
	how can you use this to make		
	different exchanges?		
Number line to 10,000	Which side of the number line did	Children estimate, work out and draw	
	you start from? Why?	numbers on a number line to 10,000	
	When estimating where a number	They need to understand that it is possible	
	should be placed, what facts can	to count in steps from both sides.	
	help you?	Number lines should be shown with or	
	Can you use your knowledge of place	without start and end numbers, or with	
	value to prove that you are correct?	numbers already placed on it.	
	When a number line has no values at		
	the end, what strategies could you		
	use to help you figure out the		
	missing value?		
	Could there be more than one		
	answer?		
1,000 more or less	What is 1,000 more than/less than a	Building on Year 3, where they explored	
	number?	finding 1, 10 and 100 more or less, children	
	Which column changes?	now move onto finding 1,000 more or less	
	What happens when I subtract 1,000	than a given number.	
	from 9,209?	Show children that they can represent their	
	Can you show me two different ways	answer in a number of ways, for example	
	of showing 1,000 more/less than e.g.	using numerals or Base 10	
	pictures, place value charts,		
	equipment.		
	Complete this sentence: I know that		
	1,000 more than is		
	because I can prove this by		
Compare numbers	Which numbers are being	Children compare 4-digit numbers using	

		presented?	comparison language and symbols to	
		•		
		Do you start counting the thousands,	determine which is greater and which is smaller.	
		hundreds, tens or ones first? Why?		
		Which column do you start	Children should represent numbers using	
		comparing from? Why?	concrete manipulatives and draw them	
		What strategy did you use to	pictorially.	
		compare the two numbers?		
		Is this the same or different to your		
		partner?		
		How many answers can you find?		
Order num	nbers	Which number is the greatest?	Children explore ordering a set of numbers	
		Which number is smallest? How do	in ascending and descending order.	
		you know?	Children find the largest or smallest number	
		Why have you chosen to order the	from a set.	
		numbers this way?		
		What strategy did you use to solve		
		this problem?		
Round to t	the nearest	Which thousands numbers does	Children round to the nearest thousand for	
1,000		sit between?	the first time, building on their knowledge of	
_,		Which place value column do we	rounding to the nearest 10 and 100	
		need to look at when we round the	Children must understand which thousands	
		nearest 1,000?	number a number sits between.	
			When rounding to the nearest 1,000,	
			children should look at the digits in the	
			hundreds column?	
Count in 2	55	What should the correct number be?	Focusing on patterns, children count in 25s.	
		Can you notice a pattern as the	They use their knowledge of counting in 50s	
		numbers increase/decrease?	and 100s to become fluent in 25s.	
		What digit do multiples of 25 end in?	Children should recognise and use the fact	
		What's the same and what's	that there are four 25s in 100	
		different when counting in 50s and 25s?		
Negative n	numbers	Can you use the words positive and	Children recognise that there are numbers	

	negative in a sentence to describe numbers? What do you notice about positive and negative numbers on the number line? Can you see any	below zero. It is essential that this concept is linked to real life situations such as temperature, water depth, money etc. Children should be able to count back	
	symmetry? Is —1degrees warmer or colder than —4degrees?	through zero. This can be supported through the use of number squares, number lines or other visual aids.	
•Estimate and use inverse operation	to 4 digits using the formal written me ns to check answers to a calculation.	d Subtraction ethods of columnar addition and subtraction w hich operations and methods to use and why	here appropriate.
1s, 10s, 100s, 1,000s	Can you represent the numbers using Base 10 and place value counters? What's the same about the representations? What's different? If we are adding tens, are the digits in the tens column the only ones that change? Do the ones/hundreds/thousands ever change?	Children build on prior learning of adding and subtracting hundreds, tens and ones. They are introduced to adding and subtracting thousands. Children should use concrete representations (Base 10, place value counters etc.) before moving to abstract and mental methods.	
Add Two 4-digit Numbers (1)	How many ones are there altogether? Can we make an exchange? Why? (Repeat questions for other columns) Is it more difficult to add 3-digit or 4- digit numbers without exchanging? Why? How can you find the missing	Children use their understanding of addition of 3-digit numbers to add two 4-digit numbers with no exchange. They use concrete equipment and a place value grid to support their understanding alongside column addition.	

	numbers?		
	Do you need to add or subtract?		
Add Two 4 -	How many ones do we have altogether?	Children add two 4-digit numbers with one exchange. They use a place value grid to	
digit Numbers (2)	Can we make an exchange? Why? How many ones do we exchange for one ten? Do we have any ones remaining? (Repeat for other columns.) Why is it important to line up the digits in the correct column when adding numbers with different amounts of digits? Which columns are affected if there are more than ten tens altogether?	support understanding alongside column addition. They explore exchanges as they occur in different place value columns and look for similarities/differences.	
Add Two 4 -	How many ones do we have altogether?	Building on adding two 4-digit numbers with one exchange, children explore multiple	
digit Numbers (3)	Can we make an exchange? Why? How many ones do we exchange for one ten? How many ones are remaining? (Repeat for each column.) Why do you have to add the digits from the right to the left, starting with the smallest place value column? Would the answer be the same if you went left to right? What is different about the total of 4,844 and 2,156?	exchanges within an addition. Ensure children continue to use equipment alongside the written method to help secure understanding of why exchanges take place and how we record them.	

	Can you think of two other numbers		
	where this would happen?		
Subtract Two 4-digit	How much further does Car A travel	Building on their experiences in Year 3,	
Numbers (1)	than Car B per year?	children use their knowledge of subtracting	
	Do you need to make both numbers	using the formal column method to subtract	
	when you are	two 4-digit numbers.	
	subtracting with counters? Why?		
	Why is it important to always	Children will focus on calculations with no	
	subtract the smallest place	exchanges, concentrating on the value of	
	value column first?	each digit.	
	How are your bar models different		
	for the two problems? Can		
	you use the written method to		
	calculate the missing		
	numbers?		
Subtract Two 4-digit	What can you find out?	Building on their experiences in	
Numbers (2)	When do we need to exchange in a	Year 3, children use their knowledge of	
	subtraction?	subtracting using the formal column method	
	How do we indicate the exchange on	to subtract two 4-digit numbers.	
	the written method?		
	How many bars are you going to use	Children explore subtractions where there is	
	in your bar model?	one exchange. They use place value	
	Can you find out how many tokens	counters to model the exchange and match	
	Mo has?	this with the written column method.	
	Can you find out how many tokens		
	they have altogether?		
	Can you create your own scenario		
	for a friend to represent?		
Subtract Two 4-digit	When do we need to exchange	Children explore what happens when a	
Numbers (3)	within a column subtraction?	subtraction has more than one exchange.	
	What happens if there is a zero in the next column? How do we	They can continue to use manipulatives to	
		support their understanding. Some children	
	exchange?	may feel confident calculating with a written	

		Can you use place value counters or	method.	
		Base 10 to support your	inctiou.	
		understanding?	Encourage children to continue to explain	
		How can you find the missing 4-digit	their working to ensure they have a secure	
		number? Are you going to add or	understanding of exchange within 4-digits	
		subtract?	numbers	
E	Efficient Subtraction	Is the column method always the	Children use their understanding of column	
		most efficient method?	subtraction and mental methods to find the	
		When we find the difference,	most efficient methods of subtraction.	
		what happens if we take one off		
		each number?	They compare the different methods of	
		Is the difference the same?	subtraction and discuss whether they would	
		How does this help us when	partition, take away or find the difference.	
		subtracting large numbers?		
		When is it more efficient to count		
		on rather than use the column		
		method?		
		Can you represent your subtraction		
		in a part-whole model or a bar		
		model?		
E	Estimate Answers	When in real life would we use an	In this step, children use their knowledge of	
		estimate?	rounding to estimate answers for	
		Why should an estimate be quick?	calculations and word problems.	
		Why have you rounded to the	They build on their understanding of near	
		nearest 10/100/1,000?	numbers in Year 3 to make sensible	
			estimates.	
C	Checking Strategies	Does the equal sign have to go at the	Children explore ways of checking to see if	
		end?	an answer is correct by using inverse	
		Could we write an addition or	operations.	
		subtraction with the equals sign at		
		the beginning?	Checking using inverse is to be encouraged	
		How many more facts can you write	so that children are using a different	
		now?	method and not just potentially repeating	

WI	hich calculations do you use to	An error, for example, if they add in a	
fin	nd the missing numbers?	different order.	
WI	hich strategies do you use to check		
уо	our calculations?		
Ho	ow can you tell if your answer is		
sei	nsible?		
WI	hat is the inverse of addition?		
WI	hat is the inverse of subtraction?		

ength and Perimeter			
IC Objectives			
Measure and calculate the p	perimeter of a rectilinear figure (including squai	res) in centimetre sand metres.	
Convert between different u	units of measure [for example, kilometre to me	tre].	
Kilometres	Can you research different athletic	Children multiply and divide by 1,000 to	
	running races?	convert between kilometres and metres.	
	What different distances are the		
	races?		
	Can you convert the distances from	They apply their understanding of adding	
	metres into kilometres?	and subtracting with four-digit numbers to	
	Which other sports have races over	find two lengths that add up to a whole	
	distances measured in metres or	number of kilometres.	
	kilometres?		
	If 10 children ran 100 metres each,	Children find fractions of kilometres, using	
	how far would they run altogether?	their Year 3 knowledge of finding fractions	
	Can we go outside and do this? How	of amounts. Encourage children to use bar	
	long do you think it will take to run 1	models to support their understanding.	
	kilometre?		
	How can we calculate half a		
	kilometre?		
	Can you find other fractions of a		
	kilometre?		

Perimeter on a Grid	What is perimeter? How can we find the perimeter of a shape? What do you think rectilinear means? Which part of the word sounds familiar? If a rectangle has a perimeter of 16 cm, could one of the sides measure 14 cm? 8 cm? 7 cm?	Children calculate the perimeter of rectilinear shapes by counting squares on a grid. Rectilinear shapes are shapes where all the sides meet at right angles. Encourage children to label the length of each side and to mark off each side as they add the lengths together. Ensure that children are given centimetre squared paper to draw the shapes on to support their calculation of the perimeter.	
Perimeter of a Rectangle	If I know the length and width of a rectangle, how can I calculate the perimeter? Can you tell me 2 different ways? Which way do you find the most efficient? If I know the perimeter of a shape and the length of one of the sides, how can I calculate the length of the missing side? Can a rectangle where the length and width are integers, ever have an odd perimeter? Why?	Children calculate the perimeter of rectangles (including squares) that are not on a squared grid. When given the length and width, children explore different approaches of finding the perimeter: adding all the sides together, and adding the length and width together then multiplying by 2 Children use their understanding of perimeter to calculate missing lengths and to investigate the possible perimeters of squares and rectangles.	
Perimeter of Rectilinear Shapes	How many different rectilinear shapes can you draw with a perimeter of 24 cm? How many sides do they each have? What is the longest side? What is the shortest side? Why are opposite sides important when calculating the perimeter of	Children will begin to calculate perimeter of rectilinear shapes without using squared paper. They use addition and subtraction to calculate the missing sides. Teachers may use part-whole models to support the understanding of how to calculate missing sides.	

rectilinear shapes?	Encourage children to continue to label each
If one side is 10 cm long, ar	
opposite side is made up o	·
lengths, one of which is 3 c	cm, how the whole
do you know what the miss	sing perimeter.
length is?	
Can you show this on a par	rt-whole
model?	
If a rectilinear shape has a	perimeter
of 24 cm, what is the great	est
number of sides it could ha	ave?
What is the least number of	of sides it
could have?	

Multiplication and Division

NC Objectives:

•Recall and use multiplication and division facts for multiplication tables up to 12 ×12.

•Count in multiples of 6, 7, 9, 25 and 1,000

•Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers.

•Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one-digit, integer scaling problems and harder correspondence problems such as *nn* objects are connected to *mm*objects.

Multiply by 10	Can you represent these calculations	Children need to	
	with concrete objects or a drawing?	be able to visualise and understand	
	Can you explain what you did to a	making a number ten times bigger and that	
	partner?	'ten times bigger' is the same as 'multiply by	
	What do you notice when	10'	
	multiplying by 10? Does it always		
	work?	The language of 'ten lots of' is vital to use in	
	What's the same and what's	this step. The understanding of the	
	different about 5 buses with 10	commutative law is essential because	
	passengers on each and 10 buses	children need to see calculations such as 10	
	with 5 passengers on each?	×3 and 3 ×10 as equal.	
Multiply by 100	How do the Base10 help us to show	Children build on multiplying by 10 and see	
	Multiplying by 100?	links between multiplying by 10 and	
	Can you think of a time when you	multiplying by 100	
	Would need to multiply by 100?		
	Will you produce a greater number	Use place value counters and Base 10 to	
	If you multiply by 100 rather than	explore what is happening to the value of	
	10? Why?	the digits in the calculation and encourage	
	Can you use multiplying by 10	children to see a rule so they can begin to	
	To help you multiply by 100?	move away from concrete representations.	
	Explain why .		
Divide by 10	What has happened to the value of	Exploring questions with whole	
	the digits?	number answers only, children	
	Can you represent the calculation	divide by 10	
	using manipulatives?	They should use concrete manipulatives and	
	Why do we need to exchange tens	place value charts to see the link between	
	for ones?	dividing by 10 and the position of the digits	
	When dividing using a place value	before and after the calculation.	
	chart, in which direction do the digits	Using concrete resources, children should	
	move?	begin to understand the relationship	
		between multiplying and dividing by 10 as	
		the inverse of the other.	
Divide by 100	How can you use dividing by 10 to	Children divide by 100 with whole number	

	help you divide by 100? How are multiplying and dividing by 100 related? Write a multiplication and division fact family using 100 as one of the numbers.	answers. Money and measure is a good real-life context for this, as coins can be used for the concrete stage.	
Multiply by 1 and 0	What does multiplying by 1 mean? What's the same and what's different about multiplying by 1 and multiplying by 0?	Children explore the result of multiplying by 1, using concrete equipment. Linked to this, they look at multiplying by 0 and use concrete equipment and pictorial representations of multiplying by 0	
Divide by 1	 What does sharing mean? Give an example. What does grouping mean? Give an example. Can you write a worded question where you need to group? Can you write a worded question where you need to share? 	Children learn what happens to a number when you divide it by 1 or by itself. Using concrete and pictorial representations, children demonstrate how both the sharing and grouping structures of division can be used to divide a number by 1 or itself.	
Multiply and Divide by 6	How many equal groups do we have? How many are in each group? How many do we have altogether? Can you write a number sentence to show this? Can you represent the problem in a picture? What does each number in the calculation represent?	Children draw on their knowledge of times tables facts in order to multiply and divide by 6 They use their knowledge of equal groups in using concrete and pictorial methods to solve multiplication and division problems.	
6 Times Table & Division Facts	What do you notice about the 3 times table and the 6 times table? Can you use 3 × to work out 6 ×? Can you use 7 × 5 to work out 7	Children use known table facts to become fluent in the six times table. For example, applying knowledge of the 3 times table by understanding that each multiple of 6 is double the equivalent	

	×6?	multiple of 3	
	Which known fact did you use?	Children should also be able to apply this	
		knowledge to multiplying and dividing by 10	
		and 100 (for example, knowing that 30	
		×6 =180 because they know that 3 ×6	
		=18).	
Multiply and Divide by 9	What's the same about each	Children use their previous knowledge of	
	question? What's different?	multiplying and dividing to become fluent in	
	Can you use concrete or pictorial	the 9 times table.	
	representations to help you answer	They apply their knowledge in different	
	the questions?	contexts.	
	What other facts can you link to this		
	fact?		
	What other times tables will help		
	you with this times table?		
	What does each number in the		
	calculation represent?		
	How many lots of 9 do we have?		
	How many groups of 9 do we have?		
9 Times Table	How did you work out the missing	Children use known times table facts to	
&	numbers?	become fluent in the 9 times table.	
Division Facts	What do you notice about the	For example, knowing that each multiple of	
	multiples of 9?	9 is one less than the equivalent multiple of	
	What do you notice about the 9	10, and using that knowledge to derive	
	times table and the 10 times table?	related facts.	
		Children should also be able to apply the	
		knowledge of the 9 times table when	
		multiplying and dividing by 10 and 100	
Multiply and Divide by 7	How many do we have altogether?	Children use their knowledge of	
	What do you notice?	multiplication and division to multiply by 7	
	Can you work out the answers by	They count in 7s, and use their knowledge of	
	partitioning 7 into 4 and 3?	equal groups supported by use of concrete	
	Which multiples of 7 do you already	and pictorial methods to solve multiplication	

	know from your other tables?	calculations and problems.	
		They explore commutativity and also	
		understand that multiplication and division	
		are inverse operations.	
7 Times Table & Division	If you know the answer to three	Children apply the facts from the 7 times	
Facts	times seven, how does it help you?	table (and other previously learned tables)	
	What's the same and what's	to solve calculations with larger numbers.	
	different about the number facts?	They need to spend some time exploring	
	How does your 7 times table help	links between multiplication tables and	
	you work out the answers?	investigating how this can help with mental	
		strategies for calculation.	