Year 4 Maths Spring medium Term plan

$\begin{aligned} & \text { 른 } \\ & \text { ら } \end{aligned}$	Number: Multiplication and Division		Number: Fractions	Number: Decimals

Number: Multiplication and Division

NC Objectives:
\bullet Recall and use multiplication and division facts for multiplication tables up to 12×12.
\bullet Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together three numbers.

- Recognise and use factor pairs and commutativity in mental calculations.
- Multiply two-digit and three-digit numbers by a one digit number using formal written layout.
- Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one-digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Week	Small step	Key Questions	Notes and Guidance	Assessment
	$\mathbf{1 1}$ and $\mathbf{1 2}$ times table	Which multiplication and division facts in the 11 and 12 times tables have not appeared before in other times-tables? Can you partition 11 and 12 into tens and ones? What times tables can we add together to help us multiply by 11 and 12? If I know 11×10 is equal to 110, how can I use this to calculate $11 \times 11 ?$	Building on their knowledge of the 1, 2 and 10 times-tables, children explore the 11 and 12 times-tables through partitioning. They use Base 10 equipment to build representations of the times-tables and use them to explore the inverse of multiplication and division statements. Highlight the importance of commutativity as children should already know the majority of facts from other times-tables.	
Multiply $\mathbf{3}$ numbers	Can you use concrete materials to build the calculations? How will you decide which order to do the multiplication in? What's the same and what's different	Children are introduced to the 'Associative Law' to multiply 3 numbers. This law focuses on the idea that it doesn't matter how we group the numbers when we multiply e.g. $4 \times 5 \times 2=(4 \times 5) \times 2=20 \times 2$		

| | | about the arrays?
 Which order do you find easier to
 calculate efficiently? | $=40$ or $4 \times 5 \times 2=4 \times(5 \times 2)=4 \times 10=40$
 They link this idea to commutativity and
 see that we can change the order of the
 numbers to group them more efficiently,
 e.g. $4 \times 2 \times 5=(4 \times 2) \times 5=8 \times 5=40$ |
| :--- | :--- | :--- | :--- | :--- |
| | Factor Pairs | Which number is a factor of every
 whole number?
 Do factors always come in pairs?
 Do whole numbers always have an even
 number of factors?
 How do arrays support in finding factors
 of a number?
 How do arrays support us in seeing
 when a number is not a factor of
 another number? | Children learn that a factor is a whole
 number that divides by another whole
 number without a remainder. They
 develop their understanding of factor pairs
 using concrete resources to work
 systematically, e.g. factor pairs for 12 -
 begin with $1 \times 12,2 \times 6,3 \times 4$. At this
 stage, children recognise that they have
 already used 4 in the previous calculation
 therefore all factor pairs have been
 identified. |
| Efficient | | | |
| Multiplication | Which method do you find the most
 efficient?
 Can you see why another method has
 worked?
 Can you explain someone else's
 method?
 Can you think of an efficient way to
 multiply by 99? | Children develop their mental
 multiplication by exploring different ways
 to calculate. They partition two-digit
 numbers into tens and ones or into factor
 pairs in order to multiply one and two-digit
 numbers. By sharing mental methods,
 children can learn to be more flexible and
 efficient. | |
| | Why are there not 26 jumps of 8 on the
 number line?
 Could you find a more efficient
 method?
 Can you calculate the multiplication
 mentally or do you need to write down
 your method?
 Can you partition your number into
 more than two parts? | Children use a variety of informal written
 methods to multiply a two-digit and a one-
 digit number. It is important to emphasise
 when it would be more efficient to use a
 mental method to multiply and when we
 need to represent our thinking by showing
 working. | |

	Multiply 2 digits by 1 digit	Which column should we start with, the ones or the tens? How are Ron and Whitney's methods the same? How are they different? Can we write a list of key things to remember when multiplying using the column method?	Children build on their understanding of formal multiplication from Year 3 to move to the formal short multiplication method. Children use their knowledge of exchanging ten ones for one ten in addition and apply this to multiplication, including exchanging multiple groups of tens. They use place value counters to support their understanding.	
	Multiply 3 digits by 1 digit	How is multiplying a three-digit number by one-digit similar to multiplying a two-digit number by one-digit? Would you use counters to represent 84 multiplied by 8? Why?	Children build on previous steps to represent a three-digit number multiplied by a one-digit number with concrete manipulatives. Teachers should be aware of misconceptions arising from 0 in the tens or ones column. Children continue to exchange groups of ten ones for tens and record this in a written method.	
	digit (1)	How can we partition 84? How many rows do we need to share equally between? If I cannot share the tens equally, what do I need to do? How many ones will I have after exchanging the tens? If we know $96 \div 4=24$, what will $96 \div 8$ be? What will $96 \div 2$ be? Can you spot a pattern?	Children build on their knowledge of dividing a 2-digit number by a 1-digit number from Year 3 by sharing into equal groups. Children use examples where the tens and the ones are divisible by the divisor, e.g. 96 divided by 3 and 84 divided by 4 . They then move on to calculations where they exchange between tens and ones.	
	Divide 2 digits by 1 digit (2)	If we are dividing by 3 , what is the highest remainder we can have? If we are dividing by 4 , what is the highest remainder we can have? Can we make a general rule comparing	Children explore dividing 2-digit numbers by 1-digit numbers involving remainders. They continue to use the place value counters to divide in order to explore why there are remainders. Teachers should	

		our divisor (the number we are dividing by) to our remainder?	highlight, through questioning, that the remainder can never be greater than the number you are dividing by.	
	Divide 3 digits by 1 digit	What is the same and what's different when we are dividing 3digit number by a 1-digit number and a 2-digit number by a 1digit number? Do we need to partition 609 into three parts or could it just be partitioned into two parts? Can we partition the number in more than one way to support dividing more efficiently?	Children apply their previous knowledge of dividing 2-digit numbers to divide a 3-digit number by a 1-digit number. They use place value counters and part- whole models to support their understanding. Children divide numbers with and without remainders.	
	Correspondence Problems	Can you use a table to support you to find all the combinations? Can you use a code to help you find the combinations? e.g. VS meaning Vanilla and Sauce Can you use coins to support you to make all the possible combinations?	Children solve more complex problems building on their understanding from Year 3 of when n objects relate to m objects. They find all solutions and notice how to use multiplication facts to solve problems.	

NC Objectives

\bullet Find the area of rectilinear shapes by counting squares.

	What is area?	$\begin{array}{l}\text { How many post it notes cover your } \\ \text { piece of paper? } \\ \text { Using the post it notes what would } \\ \text { have a smaller area or larger area than } \\ \text { your piece of paper? } \\ \text { Which square is larger/smaller? } \\ \text { Which squares will cover a } \\ \text { larger/smaller area? }\end{array}$

Children are introduced to area for the first time. They will understand that area is how much space is taken up by a 2D shape or surface. Children recognise why squares are used to measure area and understand why other things such as circles cannot be used (link to gaps between circles).

NC Objectives:

- Recognise and show, using diagrams, families of common equivalent fractions.
- Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.
- Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.
\bullet Add and subtract fractions with the same denominator.

What is a Fraction?	How can we sort the fraction cards? What does each one represent? How can we represent a / b in different ways? Is it a unit or non unit fraction? Explain how you know.	Children explore fractions in different representations, for example, fractions of shapes, quantities and fractions on a number line. They explore and recap on the meaning of numerator and denominator, non unit and unit fractions.	
Equivalent Fractions (1)	How can you fold a strip of paper into equal parts? What do you notice about the numerators and denominators? Do you see any patterns? Can a fraction have more than one equivalent fraction?	Children use strip diagrams to investigate and record equivalent fractions. They start by comparing two fractions before moving on finding more than one equivalent fraction on a fraction wall.	
Equivalent Fractions (2)	Do you notice anything about the denominators? Does this apply to the numerators? Would this pattern continue? If I multiply the numerator by a number, what do I have to do to the denominator to keep it equivalent? Is this always true? What relationships can you see between the numerator and denominator?	Children continue to understand equivalences through diagrams. They move onto using proportional reasoning to find equivalent fractions. Attention should be drawn to the method of multiplying the numerators and denominators by the same number to ensure that fractions are equivalent.	
Fractions greater than 1	How many \qquad make a whole? If I have \qquad eighths, how many more do I need to make a whole? Can you draw it? Can you build it using cubes? What do you notice about the numerator and denominator when a fraction is equivalent to a whole?	Children use manipulatives and diagrams to show that a fraction can be split into wholes and parts. Children focus on how many equal parts make a whole dependent on the number of equal parts altogether. This learning will lead on to Year 5 where children learn about improper fractions and mixed numbers.	
Count in Fractions	How many ___ make a whole?	Children explore fractions greater than	

| | | If I have __ eighths, how many more
 do I need to make a whole?
 Can you write the missing fractions in
 more than one way? | one on a number line and start to make
 connections between improper and mixed
 numbers. They use cubes and bar models
 to represent fractions greater than a
 whole. This will support children when
 adding and subtracting fractions greater
 than a whole. |
| :--- | :--- | :--- | :--- | :--- |
| | Add 2 or more
 fractions | If I have two strips folded into quarters,
 show me what 4 + 4 =
 How many quarters do I have in total?
 How many equal parts is the whole split
 into?
 How many equal parts am I adding?
 Where is on the number line?
 How can I use the number line to add to | pictorial representations to add two or
 more fractions. Children record their
 answers as an improper fraction when the
 total is more than 1 Children also explore
 using a number line to add fractions where
 they can add on from a given fraction.
 They could also explore adding fractions
 more efficiently by using known facts or
 number bonds to help them e.g. 5/9 + 7
 $/ 9+5 / 9=10 / 9+7 / 9=17 / 9$ |
| | Subtraction? 2 fractions | If I have two strips folded into eighths,
 show me what $8-8=$
 Can you use a bar model to show the
 difference between two fractions?
 Where is on the number line?
 How can I use the number line to
 subtract ?
 Can I partition my fraction to help
 subtract?
 What is staying the same?
 What is changing? | Children use practical equipment and
 pictorial representations to subtract
 fractions. Children explore using a number
 line to subtract fractions. They could also
 explore partitioning fractions to help
 subtract more efficiently by using known
 facts or number bonds to help them e.g.
 $12 / 9-7 / 9=12 / 9-2 / 9-5 / 9=5 / 9$ |

| | | Why not?
 Where can we see the whole number?
 How can we use a number line to find
 the difference between a fraction and a
 whole number? | need to understand the relationship
 between the whole number and the
 denominator. For example, $9 / 9=1,18 / 9$
 $=2$ etc. |
| :--- | :--- | :--- | :--- | :--- |
| | Calculate Fractions
 of a quantity | What is the whole?
 What fraction of the whole are we
 finding?
 How many equal parts will I split the
 whole into?
 If we change the numerator by 1, what
 do you notice?
 Can we spot a pattern?
 How can we represent this fraction of
 an amount using a bar model?
 What does this part of the model
 represent? | Children build on their understanding from
 Year 3 that the denominator tells us how
 many equal parts a whole has been split
 into and the numerator tells us how many
 equal parts of the whole there are.
 Children use concrete and pictorial
 representations to find fractions of a
 quantity. They link bar modelling to the
 abstract method in order to understand
 why the method works. |
| | Problem-solving:
 calculate quantities | If I know one quarter of a number, how
 can I find three quarters of a number?
 If I know one of the equal parts, how
 can I find the whole?
 How can a bar model support my
 working? | Children solve more complex problems for
 fractions of an amount. They continue to
 use practical equipment and pictorial
 representations to help them work out
 what the whole is when a fraction is given.
 Children continue to only use proper
 fractions within this step. |

Number: Decimals

NC Objectives:

- Recognise and write decimal equivalents of any number of tenths or hundredths.
\bullet Find the effect of dividing a one or two digit number by 10 or 100 , identifying the value of the digits in the answer as ones, tenths and hundredths
-Solve simple measure and money problems involving fractions and decimals to two decimal places.
-Convert between different units of measure [for example, kilometreto metre]

	Recognise tenths and hundredths	If each row is one row out of ten equal rows, what fraction does this represent?	Children recognise tenths and hundredths using a hundred square. When first introducing tenths and hundredths,	

$\left.\begin{array}{|l|l|l|l|l|}\hline & & \begin{array}{l}\text { If each square is one square out of one } \\ \text { hundred equal squares, what fraction } \\ \text { does this represent? } \\ \text { How many squares are in one row? } \\ \text { How many squares are in one column? } \\ \text { How many hundredths are in one } \\ \text { tenth? } \\ \text { How else could you partition these } \\ \text { numbers? }\end{array} & \begin{array}{l}\text { concrete manipulatives such as Base 10 } \\ \text { can be used to support children's } \\ \text { understanding. They see that ten } \\ \text { hundredths are equivalent to one tenth } \\ \text { and can use a part-whole model to } \\ \text { partition a fraction into tenths and } \\ \text { hundredths. }\end{array} \\ \hline & \text { Tenths as decimals } & \begin{array}{l}\text { What is a tenth? } \\ \text { How many different ways can we write } \\ \text { a tenth? } \\ \text { When do we use tenths in real life? } \\ \text { Which representation do you think is } \\ \text { clearest? Why? } \\ \text { How else could you represent the } \\ \text { decimal/fraction? }\end{array} & \begin{array}{l}\text { Using the hundred square and Base 10, } \\ \text { children can recognise the relationship } \\ \text { between 1/10 and 0.1 Children write } \\ \text { tenths as decimals and as fractions. They } \\ \text { write any number of tenths as a decimal } \\ \text { and represent them using concrete and } \\ \text { pictorial representations. Children } \\ \text { understand that a tenth is a part of a } \\ \text { whole split into 10 equal parts. In this } \\ \text { small step children stay within one whole. }\end{array} \\ \hline & \begin{array}{ll}\text { Tenths on a place } \\ \text { value grid }\end{array} & \begin{array}{l}\text { How many ones are there? } \\ \text { How many tenths are there? } \\ \text { What's the same/different between } 0.2\end{array} & \begin{array}{l}\text { Children read and represent tenths on a } \\ \text { place value grid. They see that the tenths } \\ \text { column is to the right of the decimal point. } \\ \text { Children use concrete representations to } \\ \text { make tenths on a place value grid and } \\ \text { write the number they have made as a } \\ \text { decimal. In this small step children will be } \\ \text { introduced to decimals greater than } 1\end{array} \\ \hline \text { How many different ways can you } \\ \text { make a whole using the three decimals? } \\ \text { Why do we need to use the decimal } \\ \text { point? }\end{array} \quad \begin{array}{l}\text { Children read and represent tenths on a } \\ \text { number line. They link the number line to } \\ \text { measurement, looking at measuring in } \\ \text { centimetres and millimetres. Children use } \\ \text { number lines to explore relative scale. }\end{array}\right\}$

Divide 1 digit by 10	What number is represented on the place value chart? What links can you see between the 2 methods? Which method is more efficient? What is the same and what is different when dividing by 10 on a Gattegno chart compared to a place value chart?	Children need to understand when dividing by 10 the number is being split into 10 equal parts and is 10 times smaller. Children use counters on a place value chart to see how the digits move when dividing by 10. Children should make links between the understanding of dividing by 10 and this more efficient method. Emphasise the importance of 0 as a place holder.	
Divide 2 digits b	What number is represented on the place value chart? Do I need to use 0 as a place holder when dividing a 2-digit number by 10 ? What is the same and what is different when dividing by 10 on a Gattegno chart compared to a place value chart?	As in the previous step, it is important for children to recognise the similarities and differences between the understanding of dividing by 10 and the more efficient method of moving digits. Children use a place value chart to see how 2 digitnumbers move when dividing by 10 They use counters to represent the digits before using actual digits within the place value chart.	
Hundredths	One hundredth is one whole split into how many equal parts? How many hundredths can I exchange one tenth for? How many hundredths are equivalent to 5 tenths? How does this help me complete the sequence? How does Base 10 help you represent the difference between tenths and hundredths?	Children recognise that hundredths arise from dividing one whole into one hundred equal parts. Linked to this, they see that one tenth is ten hundredths. Children count in hundredths and represent tenths and hundredths on a place value grid and a number line.	
Hundredths as decimals	One hundredth is one whole split into \qquad equal parts.	Using the hundred square and Base 10, children can recognise the relationship	

