Year 4 Maths Spring medium Term plan

Spring Spring Area Area Area	Number: Fractions	Number: Decimals
--	-------------------	------------------

Number: Multiplication and Division

NC Objectives:

•Recall and use multiplication and division facts for multiplication tables up to 12 × 12.

•Use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers.

•Recognise and use factor pairs and commutativity in mental calculations.

•Multiply two-digit and three-digit numbers by a one digit number using formal written layout.

•Solve problems involving multiplying and adding, including using the distributive law to multiply two-digit numbers by one-digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

Week	Small step	Key Questions	Notes and Guidance	Assessment
	11 and 12 times	Which multiplication and division facts	Building on their knowledge of the 1, 2 and	
	table	in the 11 and 12 times tables have not	10 times-tables, children explore the 11	
		appeared before in other times-tables?	and 12 times-tables through partitioning.	
		Can you partition 11 and 12 into tens	They use Base 10 equipment to build	
		and ones?	representations of the times-tables and	
		What times tables can we add together	use them to explore the inverse of	
		to help us multiply by 11 and 12?	multiplication and division statements.	
		If I know 11 × 10 is equal to 110, how	Highlight the importance of commutativity	
		can I use this to calculate 11 × 11?	as children should already know the	
			majority of facts from other times-tables.	
	Multiply 3 numbers	Can you use concrete materials to build	Children are introduced to the 'Associative	
		the calculations?	Law' to multiply 3 numbers. This law	
		How will you decide which order to do	focuses on the idea that it doesn't matter	
		the multiplication in?	how we group the numbers when we	
		What's the same and what's different	multiply e.g. $4 \times 5 \times 2 = (4 \times 5) \times 2 = 20 \times 2$	

	about the arrays?	= 40 or $4 \times 5 \times 2 = 4 \times (5 \times 2) = 4 \times 10 = 40$	
	Which order do you find easier to	They link this idea to commutativity and	
	calculate efficiently?	see that we can change the order of the	
		numbers to group them more efficiently,	
 Factor Pairs	Which would be is a factor of over	e.g. $4 \times 2 \times 5 = (4 \times 2) \times 5 = 8 \times 5 = 40$ Children learn that a factor is a whole	
Factor Pairs	Which number is a factor of every		
	whole number?	number that divides by another whole	
	Do factors always come in pairs?	number without a remainder. They	
	Do whole numbers always have an even	develop their understanding of factor pairs	
	number of factors?	using concrete resources to work	
	How do arrays support in finding factors	systematically, e.g. factor pairs for 12 –	
	of a number?	begin with 1×12 , 2×6 , 3×4 . At this	
	How do arrays support us in seeing	stage, children recognise that they have	
	when a number is not a factor of	already used 4 in the previous calculation	
	another number?	therefore all factor pairs have been	
 		identified.	
Efficient	Which method do you find the most	Children develop their mental	
Multiplication	efficient?	multiplication by exploring different ways	
	Can you see why another method has	to calculate. They partition two-digit	
	worked?	numbers into tens and ones or into factor	
	Can you explain someone else's	pairs in order to multiply one and two-digit	
	method?	numbers. By sharing mental methods,	
	Can you think of an efficient way to	children can learn to be more flexible and	
	multiply by 99?	efficient.	
Written methods	Why are there not 26 jumps of 8 on the	Children use a variety of informal written	
	number line?	methods to multiply a two-digit and a one-	
	Could you find a more efficient	digit number. It is important to emphasise	
	method?	when it would be more efficient to use a	
	Can you calculate the multiplication	mental method to multiply and when we	
	mentally or do you need to write down	need to represent our thinking by showing	
	your method?	working.	
	Can you partition your number into		
	more than two parts?		

Multiply 2 digits by 1 digit	Which column should we start with, the ones or the tens? How are Ron and Whitney's methods the same? How are they different? Can we write a list of key things to remember when multiplying using the	Children build on their understanding of formal multiplication from Year 3 to move to the formal short multiplication method. Children use their knowledge of exchanging ten ones for one ten in addition and apply this to multiplication, including exchanging multiple groups of	
Nutrich 2 dicite by 1	column method?	tens. They use place value counters to support their understanding.	
Multiply 3 digits by 1 digit	How is multiplying a three-digit number by one-digit similar to multiplying a two-digit number by one-digit? Would you use counters to represent 84 multiplied by 8? Why?	Children build on previous steps to represent a three-digit number multiplied by a one-digit number with concrete manipulatives. Teachers should be aware of misconceptions arising from 0 in the tens or ones column. Children continue to exchange groups of ten ones for tens and record this in a written method.	
Divide 2 digits by 1 digit (1)	How can we partition 84? How many rows do we need to share equally between? If I cannot share the tens equally, what do I need to do? How many ones will I have after exchanging the tens? If we know 96 ÷ 4 = 24, what will 96 ÷ 8 be? What will 96 ÷ 2 be? Can you spot a pattern?	Children build on their knowledge of dividing a 2-digit number by a 1-digit number from Year 3 by sharing into equal groups. Children use examples where the tens and the ones are divisible by the divisor, e.g. 96 divided by 3 and 84 divided by 4. They then move on to calculations where they exchange between tens and ones.	
Divide 2 digits by 1 digit (2)	If we are dividing by 3, what is the highest remainder we can have? If we are dividing by 4, what is the highest remainder we can have? Can we make a general rule comparing	Children explore dividing 2-digit numbers by 1-digit numbers involving remainders. They continue to use the place value counters to divide in order to explore why there are remainders. Teachers should	

		our divisor (the number we are dividing	highlight, through questioning, that the	
		by) to our remainder?	remainder can never be greater than the	
			number you are dividing by.	
	Divide 3 digits by 1	What is the same and what's different	Children apply their previous knowledge of	
	digit	when we are dividing 3digit number by	dividing 2-digit numbers to divide a 3-digit	
		a 1-digit number and a 2-digit number	number by a 1-digit number.	
		by a 1digit number?	They use place value counters and part-	
		Do we need to partition 609 into three	whole models to support their	
		parts or could it just be partitioned into	understanding.	
		two parts?	Children divide numbers with and without	
		Can we partition the number in more	remainders.	
		than one way to support dividing more		
		efficiently?		
	Correspondence	Can you use a table to support you to	Children solve more complex problems	
	Problems	find all the combinations?	building on their understanding from Year	
		Can you use a code to help you find the	3 of when n objects relate to m objects.	
		combinations? e.g. VS meaning Vanilla	They find all solutions and notice how to	
		and Sauce	use multiplication facts to solve problems.	
		Can you use coins to support you to		
		make all the possible combinations?		
		Measurem	ent: Area	
NC Objective				
		es by counting squares.	11	
	What is area?	How many post it notes cover your	Children are introduced to area for the	
		piece of paper?	first time. They will understand that area is	
		Using the post it notes what would	how much space is taken up by a 2D shape	
		have a smaller area or larger area than	or surface. Children recognise why squares	
		your piece of paper?	are used to measure area and understand	
		Which square is larger/smaller?	why other things such as circles cannot be	
		Which squares will cover a	used (link to gaps between circles).	
		larger/smaller area?		
		If I wanted to find the surface area		
		ofwhat size square would I use?		

	Why can we not use other shapes to	
	find the area?	
Counting Squares	What strategy can you use to ensure	Once children have recognised that area is
	you don't count a square twice?	measured in squares, they use the strategy
	What is the same and different about	of counting the number of squares in a
	the two fields?	shape to measure and compare the areas
	Are there any shapes that you wouldn't	of rectilinear shapes. Children are
	need to count every individual square	introduced to the notation cm2 .They
	to calculate the area?	explore the most efficient method of
	If so, which shapes?	counting squares and link this to their
	Can you write some rules for this?	understanding of squares and rectangles.
Making Shapes	Could you overlap the squares when	Children make rectilinear shapes using a
	counting area? Explain your answer.	given number of squares. They build on
	How many different rectilinear shapes	practical experience of constructing
	can you make with 8 squares?	rectilinear shapes using squares which
	Will the area always be the same? Why?	they can handle before drawing them.
Comparing Area	What is the area of the two rectilinear	Children compare the area of rectilinear
	shapes?	shapes where the same size square has
	Which shape has a larger/smaller area?	been used. Children will be able to use <
	How much larger/smaller is the area of	and > with the value of the area to
	the shape?	compare shapes. They will also order
	How can we order the shapes?	shapes based on their area.
	Can we draw a shape that would have	
	the same area as?	
	Can we draw a shape that would have a	
	larger/smaller area as?	

Fractions:

NC Objectives:

•Recognise and show, using diagrams, families of common equivalent fractions.

•Count up and down in hundredths; recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten.

•Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including non-unit fractions where the answer is a whole number.

•Add and subtract fractions with the same denominator.

What is a	Fraction? How can we sort the fraction cards?	Children explore fractions in different
Wildt is d		
	What does each one represent?	representations, for example, fractions of
	How can we represent a/b in diffe	
	ways?	number line. They explore and recap on
	Is it a unit or non unit fraction?	the meaning of numerator and
	Explain how you know.	denominator, non unit and unit fractions.
•	t Fractions How can you fold a strip of paper in	
(1)	equal parts?	and record equivalent fractions. They start
	What do you notice about the	by comparing two fractions before moving
	numerators and denominators?	on finding more than one equivalent
	Do you see any patterns?	fraction on a fraction wall.
	Can a fraction have more than one	
	equivalent fraction?	
Equivalent	t Fractions Do you notice anything about the	Children continue to understand
(2)	denominators?	equivalences through diagrams. They
	Does this apply to the numerators	move onto using proportional reasoning to
	Would this pattern continue?	find equivalent fractions. Attention should
	If I multiply the numerator by a	be drawn to the method of multiplying the
	number, what do I have to do to the	numerators and denominators by the
	denominator to keep it equivalent?	same number to ensure that fractions are
	Is this always true?	equivalent.
	What relationships can you see	
	between the numerator and	
	denominator?	
Fractions	greater How many make a whole?	Children use manipulatives and diagrams
than 1	If I have eighths, how many	to show that a fraction can be split into
	more do I need to make a whole?	wholes and parts. Children focus on how
	Can you draw it?	many equal parts make a whole
	Can you build it using cubes?	dependent on the number of equal parts
	What do you notice about the	altogether. This learning will lead on to
	numerator and denominator when	
	fraction is equivalent to a whole?	improper fractions and mixed numbers.
Count in F	ractions How many make a whole?	Children explore fractions greater than

[[1 10 1	
		If I have eighths, how many more	one on a number line and start to make	
		do I need to make a whole?	connections between improper and mixed	
		Can you write the missing fractions in	numbers. They use cubes and bar models	
		more than one way?	to represent fractions greater than a	
			whole. This will support children when	
			adding and subtracting fractions greater	
			than a whole.	
	Add 2 or more	If I have two strips folded into quarters,	Children use practical equipment and	
	fractions	show me what 4 + 4 =	pictorial representations to add two or	
		How many quarters do I have in total?	more fractions. Children record their	
		How many equal parts is the whole split	answers as an improper fraction when the	
		into?	total is more than 1 Children also explore	
		How many equal parts am I adding?	using a number line to add fractions where	
		Where is on the number line?	they can add on from a given fraction.	
		How can I use the number line to add to	They could also explore adding fractions	
		my first fraction?	more efficiently by using known facts or	
		,	number bonds to help them e.g. $5/9 + 7$	
			/9 + 5/ 9 = 10/ 9 + 7/ 9 = 17/9	
	Subtract 2 fractions	If I have two strips folded into eighths,	Children use practical equipment and	
		show me what 8 – 8 =	pictorial representations to subtract	
		Can you use a bar model to show the	fractions. Children explore using a number	
		difference between two fractions?	line to subtract fractions. They could also	
		Where is on the number line?	explore partitioning fractions to help	
		How can I use the number line to	subtract more efficiently by using known	
		subtract ?	facts or number bonds to help them e.g.	
		Can I partition my fraction to help	12 /9 - 7 /9 = 12/ 9 - 2 /9 - 5/ 9 = 5/ 9	
		subtract?		
		What is staying the same?		
		What is changing?		
	Subtract from whole	How can we represent our calculation?	Children continue to use practical	
	amounts	What is 9 /9 the same as?	equipment and pictorial representations to	
		Can we record our fraction as a whole	subtract fractions. Children subtract	
		number? Why?	fractions from a whole amount. Children	
			Tractions from a whole amount. Children	

		Why not?	need to understand the relationship	
		Where can we see the whole number?	between the whole number and the	
		How can we use a number line to find	denominator. For example, 9 /9 = 1, 18/ 9	
			• • • • • • • • • • • • • • • • • • • •	
		the difference between a fraction and a	= 2 etc.	
		whole number?		
	Calculate Fractions	What is the whole?	Children build on their understanding from	
	of a quantity	What fraction of the whole are we	Year 3 that the denominator tells us how	
		finding?	many equal parts a whole has been split	
		How many equal parts will I split the	into and the numerator tells us how many	
		whole into?	equal parts of the whole there are.	
		If we change the numerator by 1, what	Children use concrete and pictorial	
		do you notice?	representations to find fractions of a	
		Can we spot a pattern?	quantity. They link bar modelling to the	
		How can we represent this fraction of	abstract method in order to understand	
		an amount using a bar model?	why the method works.	
		What does this part of the model	,	
		represent?		
	Problem-solving:	If I know one quarter of a number, how	Children solve more complex problems for	
	calculate quantities	can I find three quarters of a number?	fractions of an amount. They continue to	
		If I know one of the equal parts, how	use practical equipment and pictorial	
		can I find the whole?	representations to help them work out	
		How can a bar model support my	what the whole is when a fraction is given.	
		working?	Children continue to only use proper	
		working:	fractions within this step.	
		Number: I		l
NC Objecti	ves	Number		
		vivalents of any number of tenths or hundr	adtha	
-	•	-	ng the value of the digits in the answer as on	as tanths and hundradths
	-	y problems involving fractions and decima		es, tentiis anu nunureutiis
	•		-	
•convert b		of measure [for example, kilometreto met		
	Recognise tenths	If each row is one row out of ten equal	Children recognise tenths and hundredths	
	and hundredths	rows, what fraction does this	using a hundred square. When first	
		represent?	introducing tenths and hundredths,	

-		I .		
		If each square is one square out of one hundred equal squares, what fraction does this represent? How many squares are in one row? How many squares are in one column? How many hundredths are in one tenth? How else could you partition these numbers?	concrete manipulatives such as Base 10 can be used to support children's understanding. They see that ten hundredths are equivalent to one tenth and can use a part-whole model to partition a fraction into tenths and hundredths.	
	Tenths as decimals	What is a tenth? How many different ways can we write a tenth? When do we use tenths in real life? Which representation do you think is clearest? Why? How else could you represent the decimal/fraction?	Using the hundred square and Base 10, children can recognise the relationship between 1 /10 and 0.1 Children write tenths as decimals and as fractions. They write any number of tenths as a decimal and represent them using concrete and pictorial representations. Children understand that a tenth is a part of a whole split into 10 equal parts. In this small step children stay within one whole.	
	Tenths on a place value grid	How many ones are there? How many tenths are there? What's the same/different between 0.2 , 1.2 and 0.8? How many different ways can you make a whole using the three decimals? Why do we need to use the decimal point?	Children read and represent tenths on a place value grid. They see that the tenths column is to the right of the decimal point. Children use concrete representations to make tenths on a place value grid and write the number they have made as a decimal. In this small step children will be introduced to decimals greater than 1	
	Tenths on a number line	How many equal parts are between 0 and 1? What are the intervals between each number? How many tenths are in one whole? What is 0.1 metres in millimetres?	Children read and represent tenths on a number line. They link the number line to measurement, looking at measuring in centimetres and millimetres. Children use number lines to explore relative scale.	

Divide 1 digit by 10	What number is represented on the place value chart? What links can you see between the 2 methods? Which method is more efficient? What is the same and what is different when dividing by 10 on a Gattegno chart compared to a place value chart?	Children need to understand when dividing by 10 the number is being split into 10 equal parts and is 10 times smaller. Children use counters on a place value chart to see how the digits move when dividing by 10. Children should make links between the understanding of dividing by 10 and this more efficient method. Emphasise the importance of 0 as a place holder.	
Divide 2 digits by 10	What number is represented on the place value chart? Do I need to use 0 as a place holder when dividing a 2-digit number by 10? What is the same and what is different when dividing by 10 on a Gattegno chart compared to a place value chart?	As in the previous step, it is important for children to recognise the similarities and differences between the understanding of dividing by 10 and the more efficient method of moving digits. Children use a place value chart to see how 2 digit- numbers move when dividing by 10 They use counters to represent the digits before using actual digits within the place value chart.	
Hundredths	One hundredth is one whole split into how many equal parts? How many hundredths can I exchange one tenth for? How many hundredths are equivalent to 5 tenths? How does this help me complete the sequence? How does Base 10 help you represent the difference between tenths and hundredths?	Children recognise that hundredths arise from dividing one whole into one hundred equal parts. Linked to this, they see that one tenth is ten hundredths. Children count in hundredths and represent tenths and hundredths on a place value grid and a number line.	
Hundredths as decimals	One hundredth is one whole split into equal parts.	Using the hundred square and Base 10, children can recognise the relationship	

	What is the same and what is different	between 1/ 100 and 0.01 Children write	
	about a number written as a fraction	hundredths as decimals and as fractions.	
	and a number written as a decimal?	They write any number of hundredths as a	
	What is the same and different	decimal and represent the decimals using	
	between 0.3 and 4 hundredths?	concrete and pictorial representations.	
		Children understand that a hundredth is a	
		part of a whole split into 100 equal parts.	
		In this small step children stay within one	
		whole.	
Hundredths or	a What is a hundredth?	Children read and represent hundredths	
Place Value gri	id How many hundredths are equivalent	on a place value grid. They see that the	
	to one tenth?	hundredths column is to the right of the	
	Look at the decimals you have	decimal point and the tenths column.	
	represented on the place value grid and	Children use concrete representations to	
	in the part whole models. What's the	make numbers with tenths and	
	same about the numbers?	hundredths on a place value grid and write	
	What's different?	the number they have made as a decimal.	
Divide 1 or 2 d	igits What number is represented on the	Children need to understand when	
by 100.	place value chart?	dividing by 100 the number is being split	
	Why is 0 important when dividing a one	into 100 equal parts and is 100 times	
	or two-digit number by 100?	smaller. Children use counters on a place	
	What is the same and what is different	value chart to see how the digits move	
	when dividing by 100 on a Gattegno	when dividing by 100. Children should	
	chart compared to a place value chart?	make links between the understanding of	
	What happens to the value of each digit	dividing by 100 and this more efficient	
	when you divide by 10 and 100?	method. Emphasise the importance of 0 as	
		a place holder.	