## Year 5 Spring Maths medium Term plan



| Multiplication and Division: |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| NC Objectives <br> $\bullet$ Multiply and divide numbers mentally drawing upon known facts. <br> - Multiply numbers up to 4 digits by a one or two digit number using a formal written method, including long multiplication for 2-digit numbers. <br> -Divide numbers up to 4 digits by a 1digit number using the formal written method of short division and interpret remainders appropriately for the context. <br> $\bullet$-Solve problems involving addition and subtraction, multiplication and division and a combination of these, including understanding the use of the equals sign. |  |  |  |  |
| Week | Small step | Key Questions | Notes and Guidance | Assessment |
|  | Multiply 4 digits by 1 digit | Why is it important to set out multiplication using columns? <br> Explain the value of each digit in your calculation. <br> How do we show there is nothing in a place value column? <br> What do we do if there are ten or more counters in a place value column? Which part of the multiplication is the product? | Children build on previous steps to represent a 4-digit number multiplied by a 1-digit number using concrete manipulatives. Teachers should be aware of misconceptions arising from using 0 as a place holder in the hundreds, tens or ones column. Children then move on to explore multiplication with exchange in one, and then more than one column. |  |
|  | Multiply 2 digits (area model) | What are we multiplying? How can we partition these numbers? <br> Where can we see $20 \times 20$ ? <br> What does the 40 represent? <br> What's the same and what's different between the three representations (Base 10, place value counters, grid)? | Children use Base 10 to represent the area model of multiplication, which will enable them to see the size and scale linked to multiplying. <br> Children will then move on to representing multiplication more abstractly with place value counters and then numbers. |  |
|  | Multiply 2 digits by 2 digits | Why is the zero important? What numbers are being multiplied in the first line and in the second line? | Children will move on from the area model and work towards more formal multiplication methods. |  |


|  |  | When do we need to make an exchange? <br> What can we exchange if the product is 42 ones? <br> If we know what $38 \times 12$ is equal to, how else could we work out $39 \times 12$ ? | They will start by exploring the role of the zero in the column method and understand its importance. <br> Children should understand what is happening within each step of the calculation process. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Multiply 3 digits by digits | Why is the zero important? <br> What numbers are being multiplied in the first line and the second line? <br> When do we need to make an exchange? <br> What happens if there is an exchange in the last step of the calculation? | Children will extend their multiplication skills to multiplying 3digit numbers by 2digit numbers. They will use multiplication to find area and solve multi-step problems. Methods previously explored are still useful e.g. using an area model. |  |
|  | Multiply 4 digits digits | Explain the steps followed when using this multiplication method. <br> Look at the numbers in each question, can they help you estimate which answer will be the largest? <br> Explain why there is a 9 in the thousands column. <br> Why do we write the larger number above the smaller number? <br> What links can you see between these questions? How can you use these to support your answers? | Children will build on their understanding of multiplying a 3-digit number by a 2digit number and apply this to multiplying 4-digit numbers by 2-digit numbers. <br> It is important that children understand the steps taken when using this multiplication method. <br> Methods previously explored are still useful e.g. grid. |  |
|  | Divide 4 digits by 1 digit | How many groups of 4 thousands are there in 4 thousands? <br> How many groups of 4 hundreds are there in 8 hundreds? <br> How many groups of 4 tens are there in 9 tens? <br> What can we do with the remaining ten? | Children use their knowledge from Year 4 of dividing 3-digits numbers by a 1-digit number to divide up to 4-digit numbers by a 1-digit number. <br> They use place value counters to partition their number and then group to develop their understanding of the short division method. |  |


|  |  | How many groups of 4 ones are there in <br> 12 ones? <br> Do I need to solve both calculations to <br> compare the divisions? |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Divide with <br> remainders | If we can't make a group in this column, <br> what do we do? <br> What happens if we can't group the <br> ones equally? <br> In this number story, what does the <br> remainder mean? <br> When would we round the remainder <br> up or down? <br> In which context would we just focus on <br> the remainder? | Children continue to use place value <br> counters to partition and then group their <br> number to further develop their <br> understanding of the short division <br> method. <br> They start to focus on remainders and <br> build on their learning from Year 4 to <br> understand remainders in context. They <br> do not represent their remainder as a <br> fraction at this point. |  |

## Fractions:

## NC Objectives:

- Compare and order fractions whose denominators are multiples of the same number.
-Identify, name and write equivalent fractions of a given fraction, represented visually including tenths and hundredths.
$\bullet$ Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements $>1$ as a mixed number [for example $2 / 5+4 / 5=6 / 5=11 / 5$
-Add and subtract fractions with the same denominator and denominators that are multiples of the same number.

$\left.\begin{array}{|l|l|l|l|l|}\hline & & \begin{array}{l}\text { What do you notice about the improper } \\ \text { fraction and the mixed number? }\end{array} & \begin{array}{l}\text { the first time. An improper fraction is a } \\ \text { fraction where the numerator is larger } \\ \text { than the denominator. A mixed number is } \\ \text { a whole number alongside a fraction. It is } \\ \text { important for children to see this process } \\ \text { represented visually to allow them to } \\ \text { make the connections between the } \\ \text { concept and what happens in the abstract. }\end{array} \\ \hline & \begin{array}{ll}\text { Mixed numbers to } \\ \text { improper fractions }\end{array} & \begin{array}{l}\text { How many quarters/halves/eighths are } \\ \text { there in a whole? } \\ \text { What do you notice about the whole } \\ \text { number and the denominator? } \\ \text { What happens to the whole number } \\ \text { and the numerator? Why? }\end{array} & \begin{array}{l}\text { Children now convert from mixed numbers } \\ \text { to improper fractions using concrete and } \\ \text { pictorial methods to understand the } \\ \text { abstract method. Ensure children always } \\ \text { write their working alongside the concrete } \\ \text { and pictorial representations so they can } \\ \text { see the clear links. }\end{array} \\ \hline \text { Number sequences } & \begin{array}{l}\text { What other start numbers could we } \\ \text { begin with? } \\ \text { Will your sequence increase or } \\ \text { decrease? } \\ \text { How much will it go up or down by each } \\ \text { time? } \\ \text { If my sequence is decreasing by }\end{array} & \begin{array}{l}\text { Children will count up and down in a given } \\ \text { fraction. They will continue to use visual } \\ \text { representations to help them explore } \\ \text { number sequences. They will also find } \\ \text { missing fractions in a sequence and } \\ \text { determine whether the sequence is } \\ \text { increasing or decreasing and by how much. } \\ \text { numbers will be in my sequence? }\end{array} & \begin{array}{l}\text { how does a bar model help us to } \\ \text { visualise the fractions? } \\ \text { Should both of our bars be the same } \\ \text { size? Why? } \\ \text { What does this show us? } \\ \text { If the numerators are the same, how } \\ \text { can we compare our fractions? } \\ \text { If the denominators are the same, how } \\ \text { can we compare our fractions? }\end{array} & \begin{array}{l}\text { Children build on their equivalent fraction } \\ \text { knowledge to compare and order fractions } \\ \text { less than 1 where the denominators are } \\ \text { multiples of the same number. It is } \\ \text { important that children are able to draw } \\ \text { models so that they can directly compare } \\ \text { them. Children need to find the common } \\ \text { denominator in this step. They may also } \\ \text { investigate finding a common numerator. }\end{array} \\ \hline \text { Compare and order } \\ \text { fractions less than 1 }\end{array}\right\}$

|  | Do we always have to find a common denominator? <br> Can we find a common numerator? |  |  |
| :---: | :---: | :---: | :---: |
| Compare and order fractions greater than 1 | How can we represent the fractions? How does the bar help us see which fraction is the greatest? <br> Can we use our knowledge of multiples to help us? <br> Can you predict which fractions will be greatest? <br> Explain how you know. When we are comparing mixed numbers what can we do to the bars to help us see each fractions? | Children use their knowledge of ordering fractions less than 1 to help them compare and order fractions greater than 1 They use their knowledge of common denominators to help them. Children will compare both improper fractions and mixed numbers during this step. |  |
| Add and subtract fractions | How many equal parts do I need to split my bar into? <br> Can you convert the improper fraction into a mixed number? <br> How can a bar model help you balance both sides of the equals sign? | Children recap their year 4 understanding and add and subtract fractions with the same denominator. They use bar models to support understanding of adding and subtracting fractions. |  |
| Add fractions within 1 | How can we convert $\qquad$ into $\qquad$ ? <br> How can we convert thirds into fifteenths? <br> What do you think the common denominator might be? Why? Could it be anything else? <br> What do you notice about the denominators? <br> Can you simplify your answer? | Children add fractions with different denominators for the first time. The denominators are multiples of one another. It is important that children see this represented visually so they can make connections with the abstract. |  |
| Add 3 or more fractions | How can we split our model? <br> What do you notice about the denominators? <br> What is that same and what is different | Children use their knowledge of adding fractions that are multiples of one another to add more than 2 fractions. They will use an area model and bar models to continue |  |


|  | about the area model and the bar model? <br> How do the models show the common denominator? | to explore how to add fractions where the denominators are multiples of one another. |  |
| :---: | :---: | :---: | :---: |
| Add Fractions | Do I need to count all the sections to find the total? <br> Can you see a whole? <br> Can we see common equivalent <br> fractions that we already know without converting them? <br> What is the best way to solve $\qquad$ ? Explain why. | Children continue to represent adding fractions using the area model and the bar model to explore adding two or more fractions that are greater than 1 Children can record their totals as an improper fraction but will then convert this to a mixed number using their prior knowledge. |  |
| Add mixed numbers | How can we partition this mixed number into whole numbers and fractions? <br> What will the wholes total? <br> Can I add the fractions straight away? What will these mixed numbers be as improper fractions? <br> If I have an improper fraction in the question, should I change it to a mixed number first? Why? | Children move on to adding two fractions where one or both are mixed numbers or an improper fraction. They will use a method of adding the wholes and then adding the parts. Children will record their answer in its simplest form. Children can still draw models to represent adding fractions. |  |
| Subtract Fractions | What could the common denominator be? <br> Can you draw an area model to help you solve the problem? <br> Is it easier to us a take away bar model or a bar model to find the difference? | Children subtract fractions with different denominators for the first time, where one denominator is a multiple of the other. It is important that children see this represented visually so they can make connections with the abstract. It is important that subtraction is explored as take away and finding the difference |  |
| Subtract mixed numbers | Which fraction is greatest? <br> How do you know? <br> If the denominators are different, what | Children apply their understanding of subtracting fractions where one denominator is a multiple of the other to |  |


|  |  | can we do? <br> Can you simplify your answer? | subtract proper fractions from mixed <br> numbers. They continue to use models <br> and number lines to support their <br> understanding. |
| :--- | :--- | :--- | :--- | :--- |
|  | Subtract- breaking <br> the whole | Is flexible partitioning easier than <br> converting the mixed number to an <br> improper fraction? <br> Do we always have to partition the <br> mixed number? <br> When can we subtract a fraction <br> without partitioning the mixed number <br> in a different way? | Children use their knowledge of fractions <br> to subtract two fractions where one is a <br> mixed number and you need to break one <br> of the wholes up. They use the method of <br> flexible partitioning to create a new mixed <br> number so they can complete the <br> calculation. |
|  | Subtract 2 mixed <br> numbers | Why is subtracting the wholes and parts <br> separately easier with some fractions <br> than others? <br> Can you show the subtraction as a <br> difference as well as a take away on the <br> bar model? <br> Does making the whole numbers larger <br> make the subtraction any more <br> difficult? Explain why. | Children use different strategies to <br> subtract two mixed numbers. Building on <br> learning in previous steps, they look at <br> partitioning the mixed numbers into <br> wholes and parts and build on their <br> understanding of flexible partitioning to <br> subtract two mixed numbers when an <br> exchange is involved. |
|  | Multiply unit <br> fractions by an <br> integer | How is multiplying fractions similar to <br> adding fractions? <br> Which bar model do you find the most <br> useful? <br> Which bar model helps us to convert <br> from an improper fraction to a mixed <br> number most effectively? | Children are introduced to multiplying <br> fractions by a whole number for the first <br> time. They link this to repeated addition <br> and see that the denominator remains the <br> same, whilst the numerator is multiplied <br> by the integer. This is shown clearly <br> through the range of models to build the <br> children's conceptual understanding of <br> multiplying fractions. |
| Multiply non-unit <br> fractions by an <br> integer | Can you show me 3 lots of 3/10 on a <br> bar model? <br> How many tenths do we have | Children apply prior knowledge of multiply <br> a fraction by a while number to multiplying <br> a non-unit fraction by a whole number. |  |



## NC Objectives:

-Read, write, order and compare numbers with up to three decimal places.
$\bullet$ Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.
-Round decimals with two decimal places to the nearest whole number and to one decimal place.
-Solve problems involving number up to three decimal places.

- Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal.
- Solve problems which require knowing percentage and decimal equivalents of $1 / 21 / 41 / 52 / 54 / 5$ and those fractions with a denominator of a multiple of $\mathbf{1 0}$ or 25.

$\left.\begin{array}{|l|l|l|l|l|}\hline & & \begin{array}{l}\text { what does the 4 represent? } \\ \text { Can we represent this number in a } \\ \text { different way, and another, and } \\ \text { another? } \\ \text { On the number line, where can we see } \\ \text { tenths? } \\ \text { Where can we see hundredths? } \\ \text { Tell me another that would come in } \\ \text { between c and d as a fraction. } \\ \text { Tell me a number that would not come } \\ \text { in between c and d. }\end{array} & \begin{array}{l}\text { and numbers greater than 1. They } \\ \text { represent them as fractions and as } \\ \text { decimals. Children record the number in } \\ \text { multiple representations, including } \\ \text { expanded form and in words. }\end{array} \\ \hline & \begin{array}{l}\text { Understanding } \\ \text { thousandths }\end{array} & \begin{array}{l}\text { How many tenths are in a whole? } \\ \text { How many hundredths are there in 10 } \\ \text { tenths? } \\ \text { How many thousandths are there in } 2 \\ \text { tenths? } \\ \text { How many different ways can this } \\ \text { number be written? }\end{array} & \begin{array}{l}\text { Children build on previous learning of } \\ \text { tenths and hundredths } 1 \text { and apply this to } \\ \text { understanding thousandths. They convert } \\ \text { decimals to fractions. Children develop } \\ \text { their knowledge of exchange and apply it } \\ \text { to the concept of decimals. For example } 3 \\ \text { tenths = 30 hundredths = 300 }\end{array} \\ \text { tenthen hundredths equal to seven } \\ \text { thousandths) }\end{array}\right\}$
$\left.\begin{array}{|l|l|l|l|l|}\hline & & \text { column? Why? } & \\ \hline & \text { Rounding decimals } & \begin{array}{l}\text { What number is represented? } \\ \text { How many decimal places does it have? } \\ \text { When rounding to the nearest one } \\ \text { decimal place, how many decimals will } \\ \text { the answer have? } \\ \text { Where would 3.25 appear on both } \\ \text { number lines? } \\ \text { What is the same and what is different } \\ \text { about the two number lines? }\end{array} & \begin{array}{l}\text { Children are introduced to numbers with } \\ \text { two decimal places and 1 develop their } \\ \text { understanding of rounding to the nearest } \\ \text { whole number and to the nearest tenth. } \\ \text { Number lines support children to } \\ \text { understand where numbers appear in } \\ \text { relation to other numbers and are } \\ \text { important to developing conceptual } \\ \text { understanding of rounding. }\end{array} \\ \hline & \begin{array}{ll}\text { Order and compare } \\ \text { decimals }\end{array} & \begin{array}{l}\text { What number is represented? } \\ \text { because... }\end{array} & \begin{array}{l}\text { Children order and compare numbers with } \\ \text { up to three decimal 1 places. They use } \\ \text { place value counters to represent the }\end{array} \\ \text { Explain how you know. } \\ \text { numbers they are comparing. Number } \\ \text { lines support children to understand } \\ \text { where numbers appear in relation to other } \\ \text { numbers. } \\ \text { value counters? }\end{array}\right\}$

|  | Percentages as <br> fractions and <br> decimals | What do you notice about the <br> percentage and the decimal? <br> What's the same? <br> What's different about percentages, <br> decimals and fractions? <br> How can we record this proportion as a <br> fraction? <br> How can we turn it into a percentage? <br> Explain your method. | Children represent percentages as <br> fractions using the denominator 1100 and <br> make the connection to decimals and <br> hundredths. Children will recognise <br> percentages, decimals and fractions are <br> different ways of expressing proportions. |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Equivalent F.D.P | Show these decimals on the bead string. <br> What are they as a decimal? <br> What are they as a fraction? <br> Can you simplify the fraction? <br> How can we represent the fractions on <br> a number line? <br> What are they equivalent to? <br> Which is closer to $100 \%, \# \$$ or $70 \%$ ? <br> How do you know? | Children recognise simple equivalent <br> fractions and represent them 1 as decimals <br> and percentages. Children then solve <br> problems which require knowing <br> percentage and decimal equivalents of $1 / 21 / 4$ <br> $1 / 52 / 54 / 5$ and those fractions with a <br> denominator of a multiple of 10 or 25 |  |

