Year 5 Spring Maths medium Term plan

Spring	Number: Multiplicati and Division	on Number: Fractio	ns	Number: Decimals and Percentages		
NC Object	Multiplication and Division:					
•Multiply	and divide numbers mental	ly drawing upon known facts.				
•Multiply	numbers up to 4 digits by a	one or two digit number using a formal writte	n method, including lor	g multiplication for 2-	digit numbers.	
•Divide nu	umbers up to 4 digits by a 10	ligit number using the formal written method	of short division and int	terpret remainders app	propriately for the context.	
•Solve pro	oblems involving addition ar	d subtraction, multiplication and division and	a combination of these	, including understand	ing the use of the equals sign.	
Week	Small step	Key Questions	Notes and Guidance	2	Assessment	
	Multiply 4 digits by 1	Why is it important to set out	Children build on pr	evious steps to		
	digit	multiplication using columns?	represent a 4-digit n	umber multiplied by	a	
		Explain the value of each digit in your	1-digit number using	g concrete		
		calculation.	manipulatives. Teac	hers should be aware	2	
		How do we show there is nothing in a	of misconceptions a	rising from using 0 as	a	
		place value column?	place holder in the h	nundreds, tens or one	25	
		What do we do if there are ten or more	column. Children the	en move on to explor	e	
		counters in a place value column?	multiplication with e	exchange in one, and		
		Which part of the multiplication is the	then more than one	column.		
		product?				
	Multiply 2 digits	What are we multiplying? How can we	Children use Base 10) to represent the are	ea	
	(area model)	partition these numbers?	model of multiplicat	ion, which will enable	e	
		Where can we see 20 × 20?	them to see the size	and scale linked to		
		What does the 40 represent?	multiplying.			
		What's the same and what's different	Children will then m	ove on to representi	ng	
		between the three representations	multiplication more	abstractly with place		
		(Base 10, place value counters, grid)?	value counters and	then numbers.		
	Multiply 2 digits by 2	Why is the zero important?	Children will move o	on from the area mod	lel	
	digits	What numbers are being multiplied in	and work towards m	nore formal		
		the first line and in the second line?	multiplication method	ods.		

	When do we need to make an	They will start by exploring the role of the	
	exchange?	zero in the column method and	
	What can we exchange if the product is	understand its importance.	
	42 ones?	Children should understand what is	
	If we know what 38 × 12 is equal to,	happening within each step of the	
	how else could we work out 39 × 12?	calculation process.	
Multiply 3 digits by 2	Why is the zero important?	Children will extend their multiplication	
digits	What numbers are being multiplied in	skills to multiplying 3digit numbers by 2-	
	the first line and the second line?	digit numbers. They will use multiplication	
	When do we need to make an	to find area and solve multi-step problems.	
	exchange?	Methods previously explored are still	
	What happens if there is an exchange in	useful e.g. using an area model.	
	the last step of the calculation?		
Multiply 4 digits by 2	Explain the steps followed when using	Children will build on their understanding	
digits	this multiplication method.	of multiplying a 3-digit number by a 2-	
	Look at the numbers in each question,	digit number and apply this to multiplying	
	can they help you estimate which	4-digit numbers by 2-digit numbers.	
	answer will be the largest?	It is important that children understand	
	Explain why there is a 9 in the	the steps taken when using this	
	thousands column.	multiplication method.	
	Why do we write the larger number	Methods previously explored are still	
	above the smaller number?	useful e.g. grid.	
	What links can you see between these		
	questions? How can you use these to		
	support your answers?		
Divide 4 digits by 1	How many groups of 4 thousands are	Children use their knowledge from Year 4	
digit	there in 4 thousands?	of dividing 3-digits numbers by a 1-digit	
	How many groups of 4 hundreds are	number to divide up to 4-digit numbers by	
	there in 8 hundreds?	a 1-digit number.	
	How many groups of 4 tens are there in	They use place value counters to partition	
	9 tens?	their number and then group to develop	
	What can we do with the remaining	their understanding of the short division	
	ten?	method.	

		How many groups of 4 ones are there in				
		12 ones?				
		Do I need to solve both calculations to				
		compare the divisions?				
	Divide with	If we can't make a group in this column,	Children continue to use place value			
	remainders	what do we do?	counters to partition and then group their			
		What happens if we can't group the	number to further develop their			
		ones equally?	understanding of the short division			
		In this number story, what does the	method.			
		remainder mean?	They start to focus on remainders and			
		When would we round the remainder	build on their learning from Year 4 to			
		up or down?	understand remainders in context. They			
		In which context would we just focus on	do not represent their remainder as a			
		the remainder?	fraction at this point.			
		Fractio	<mark>ons:</mark>			
NC Objective	es:					
•Compare ar	nd order fractions who	ose denominators are multiples of the sam	ne number.			
 Identify, na 	ame and write equival	ent fractions of a given fraction, represent	ted visually including tenths and hundredths.			
 Recognise n 	mixed numbers and im	proper fractions and convert from one for	rm to the other and write mathematical state	ements >1 as a mixed number		
[for example 2/5 + 4/5 = 6/5 = 1 1/5						
Add and su	 Add and subtract fractions with the same denominator and denominators that are multiples of the same number. 					
	Equivalent Fractions	What equivalent fractions can we find	Children recap on learning from year 4.			
		by folding the paper?	They explore equivalent fractions using			
		How can we record these?	models and concrete representations			

	by folding the paper?	They explore equivalent fractions using	
	How can we record these?	models and concrete representations.	
	What is the same and what is different	They use models to make the link to	
	about the numerators and	multiplication and division. Children will	
	denominators in the equivalent	then be able to apply the abstract method	
	fractions?	to find equivalent fractions. It is important	
	How does multiplication and division	children have the conceptual	
	help us find equivalent fractions?	understanding before moving in to just	
	Where can we see this in our model?	using an abstract method.	
Improper fractions	Why are we grouping the cubes into 5s?	In this step, children convert from	
to mixed numbers	How many fifths are there in a whole?	improper fractions to mixed numbers for	

	What do you notice about the improper	the first time. An improper fraction is a	
	fraction and the mixed number?	fraction where the numerator is larger	
		than the denominator. A mixed number is	
		a whole number alongside a fraction. It is	
		important for children to see this process	
		represented visually to allow them to	
		make the connections between the	
		concept and what happens in the abstract.	
Mixed numbers to	How many quarters/halves/eighths are	Children now convert from mixed numbers	
improper fractions	there in a whole?	to improper fractions using concrete and	
	What do you notice about the whole	pictorial methods to understand the	
	number and the denominator?	abstract method. Ensure children always	
	What happens to the whole number	write their working alongside the concrete	
	and the numerator? Why?	and pictorial representations so they can	
		see the clear links.	
Number sequences	What other start numbers could we	Children will count up and down in a given	
•	begin with?	fraction. They will continue to use visual	
	Will your sequence increase or	representations to help them explore	
	decrease?	number sequences. They will also find	
	How much will it go up or down by each	missing fractions in a sequence and	
	time?	determine whether the sequence is	
	If my sequence is decreasing by and	increasing or decreasing and by how much.	
	the number is worth, what		
	numbers will be in my sequence?		
Compare and order	How does a bar model help us to	Children build on their equivalent fraction	
fractions less than 1	visualise the fractions?	knowledge to compare and order fractions	
	Should both of our bars be the same	less than 1 where the denominators are	
	size? Why?	multiples of the same number. It is	
	What does this show us?	important that children are able to draw	
	If the numerators are the same, how	models so that they can directly compare	
	can we compare our fractions?	them. Children need to find the common	
	If the denominators are the same, how	denominator in this step. They may also	
	can we compare our fractions?	investigate finding a common numerator.	

Compare and order fractions greater than 1	Do we always have to find a common denominator? Can we find a common numerator? How can we represent the fractions? How does the bar help us see which fraction is the greatest? Can we use our knowledge of multiples to help us? Can you predict which fractions will be greatest? Explain how you know. When we are comparing mixed numbers what can we	Children use their knowledge of ordering fractions less than 1 to help them compare and order fractions greater than 1 They use their knowledge of common denominators to help them. Children will compare both improper fractions and mixed numbers during this step.	
	do to the bars to help us see each fractions?		
Add and subtract fractions	How many equal parts do I need to split my bar into? Can you convert the improper fraction into a mixed number? How can a bar model help you balance both sides of the equals sign?	Children recap their year 4 understanding and add and subtract fractions with the same denominator. They use bar models to support understanding of adding and subtracting fractions.	
Add fractions within 1	How can we convert into? How can we convert thirds into fifteenths? What do you think the common denominator might be? Why? Could it be anything else? What do you notice about the denominators? Can you simplify your answer?	Children add fractions with different denominators for the first time. The denominators are multiples of one another. It is important that children see this represented visually so they can make connections with the abstract.	
Add 3 or more fractions	How can we split our model? What do you notice about the denominators? What is that same and what is different	Children use their knowledge of adding fractions that are multiples of one another to add more than 2 fractions. They will use an area model and bar models to continue	

	about the area model and the bar	to explore how to add fractions where the	
	model?	denominators are multiples of one	
	How do the models show the common	another.	
	denominator?		
Add Fractions	Do I need to count all the sections to	Children continue to represent adding	
	find the total?	fractions using the area model and the bar	
	Can you see a whole?	model to explore adding two or more	
	Can we see common equivalent	fractions that are greater than 1 Children	
	fractions that we already know without	can record their totals as an improper	
	converting them?	fraction but will then convert this to a	
	What is the best way to solve?	mixed number using their prior	
	Explain why.	knowledge.	
Add mixed nu	mbers How can we partition this mixed	Children move on to adding two fractions	
	number into whole numbers and	where one or both are mixed numbers or	
	fractions?	an improper fraction. They will use a	
	What will the wholes total?	method of adding the wholes and then	
	Can I add the fractions straight away?	adding the parts. Children will record their	
	What will these mixed numbers be as	answer in its simplest form. Children can	
	improper fractions?	still draw models to represent adding	
	If I have an improper fraction in the	fractions.	
	question, should I change it to a mixed		
	number first? Why?		
Subtract Fract	ions What could the common denominator	Children subtract fractions with different	
	be?	denominators for the first time, where one	
	Can you draw an area model to help	denominator is a multiple of the other. It is	
	you solve the problem?	important that children see this	
	Is it easier to us a take away bar model	represented visually so they can make	
	or a bar model to find the difference?	connections with the abstract. It is	
		important that subtraction is explored as	
		take away and finding the difference	
Subtract mixed	d Which fraction is greatest?	Children apply their understanding of	
numbers	How do you know?	subtracting fractions where one	
	If the denominators are different, what	denominator is a multiple of the other to	

	can we do?	subtract proper fractions from mixed	
	Can you simplify your answer?	numbers. They continue to use models	
		and number lines to support their	
		understanding.	
Subtract- breaking	Is flexible partitioning easier than	Children use their knowledge of fractions	
the whole	converting the mixed number to an	to subtract two fractions where one is a	
	improper fraction?	mixed number and you need to break one	
	Do we always have to partition the	of the wholes up. They use the method of	
	mixed number?	flexible partitioning to create a new mixed	
	When can we subtract a fraction	number so they can complete the	
	without partitioning the mixed number	calculation.	
	in a different way?		
Subtract 2 mixed	Why is subtracting the wholes and parts	Children use different strategies to	
numbers	separately easier with some fractions	subtract two mixed numbers. Building on	
	than others?	learning in previous steps, they look at	
	Can you show the subtraction as a	partitioning the mixed numbers into	
	difference as well as a take away on the	wholes and parts and build on their	
	bar model?	understanding of flexible partitioning to	
	Does making the whole numbers larger	subtract two mixed numbers when an	
	make the subtraction any more	exchange is involved.	
	difficult? Explain why.		
Multiply unit	How is multiplying fractions similar to	Children are introduced to multiplying	
fractions by an	adding fractions?	fractions by a whole number for the first	
integer	Which bar model do you find the most	time. They link this to repeated addition	
	useful?	and see that the denominator remains the	
	Which bar model helps us to convert	same, whilst the numerator is multiplied	
	from an improper fraction to a mixed	by the integer. This is shown clearly	
	number most effectively?	through the range of models to build the	
		children's conceptual understanding of	
		multiplying fractions.	
Multiply non-unit	Can you show me 3 lots of 3/10 on a	Children apply prior knowledge of multiply	
fractions by an	bar model?	a fraction by a while number to multiplying	
integer	How many tenths do we have	a non-unit fraction by a whole number.	

		altogether?	They use similar models and discuss which	
		How does repeated addition help us	method will be the most efficient	
		with this multiplication?	depending on the questions asked.	
		How does a number line help us see the		
		multiplication?		
	Multiply mixed	How could you represent this mixed	Children use their knowledge of fractions	
	numbers by integers	number?	to multiply a mixed number by a whole	
		What is the denominator? How do you	number. They use the method of	
		know?	multiplying the whole and part separately	
		How many wholes are there?	and also the method of converting to an	
		How many parts are there?	improper fraction then multiplying. It is	
		What is multiplying fractions similar to?	important that they see varied	
		(repeated addition)	representations of fractions.	
		What representation could you use to		
		convert a mixed number to an improper		
		fraction?		
	Fraction of an	How many equal groups have you	Children find unit and non-unit fractions of	
	amount	shared 49 into? Why?	amount, quantities and measures. It is	
		What does each equal part represent as	important that the concept is explored	
		a fraction and an amount?	pictorially through bar models to support	
		What could you do to 1 metre to make	children to make sense of the abstract.	
		the calculation easier?		
		Could you convert 4/5 to make the		
		calculation any easier?		
	Using fractions as	Is it easier to multiply a fraction of find	Children link their understanding of	
	operators	a fraction of an amount?	fractions of amounts and multiplying	
		Does it depend on the whole number	fractions to use fractions as operators.	
		you are multiplying by?	They use their knowledge of	
		Can you see the link between the	commutativity to help them understand	
		numbers?	that you can change the order of	
		can you use previous calculations to	multiplication without changing the	
		neip you calculate missing numbers?	outcome.	
Decimals and percentages				

NC Objectives:

•Read, write, order and compare numbers with up to three decimal places.

•Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.

•Round decimals with two decimal places to the nearest whole number and to one decimal place.

•Solve problems involving number up to three decimal places.

•Recognise the per cent symbol (%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal.

•Solve problems which require knowing percentage and decimal equivalents of ½ ¼ 1/5 2/5 4/5 and those fractions with a denominator of a multiple of 10 or 25.

Decimals up to 2 d.p	How many ones/tenths/hundredths are in the number? How do we write this as a decimal? Why? What is the value of the in the	Children use place value counters and a place value grid to make numbers with up to two decimal places. They read and write decimal numbers and understand the value of each digit. They show their	
	number? When do we need to use zero as a place holder? How can we partition decimal numbers in different ways?	understanding of place value by partitioning decimal numbers in different ways.	
Decimals as fractions (1)	What does the whole grid represent? What can we use to describe the equal parts of the grid (fractions and decimals) How would you convert a fraction to a decimal? What does the decimal point mean? Can the fraction be simplified? How can you prove that the decimal and the fraction are the same?	Children explore the relationship between decimals and fractions. They start with a fraction convert it into a decimal and as they progress, children will see the direct link between fractions and decimals. Children use their previous knowledge of fractions to aid this process	
Decimals as fractions (2)	In the number 1.34 what does the 1 represent, what does the 3 represent,	Children concentrate on more complex decimals numbers e.g. 1 (0.96, 0.03, 0.27)	

		what does the 4 represent?	and numbers greater than 1. They	
		Can we represent this number in a	represent them as fractions and as	
		different way, and another, and	decimals. Children record the number in	
		another?	multiple representations, including	
		On the number line, where can we see	expanded form and in words.	
		tenths?		
		Where can we see hundredths?		
		Tell me another that would come in		
		between c and d as a fraction.		
		Tell me a number that would not come		
		in between c and d.		
U	Inderstanding	How many tenths are in a whole?	Children build on previous learning of	
ti	housand ths	How many hundredths are there in 10	tenths and hundredths 1 and apply this to	
		tenths?	understanding thousandths. They convert	
		How many thousandths are there in 2	decimals to fractions. Children develop	
		tenths?	their knowledge of exchange and apply it	
		How many different ways can this	to the concept of decimals. For example 3	
		number be written?	tenths = 30 hundredths = 300	
		Are seven hundredths equal to seven	thousandths)	
		tenths? Why?		
T	housandths as	What number is represented?	Children build on their understanding of	
d	ecimals	How will we show this on the place	decimals and start to 1 understand the link	
		value chart?	between tenths, hundredths and	
		How many ones/	thousandths and write a thousandth as a	
		tenths/hundredths/thousandths do I	decimal e.g. 0.001 Children use concrete	
		have?	materials to understand the connection	
		What does 0.21 represent?	between one tenth, one hundredth, one	
		How do we record this as a fraction?	thousandth. They will continue to	
		How many thousandths do I have?	represent decimals in different ways and	
		How can I record this number	will also explore deeper connections such	
		differently?	as 100/1000 is the same as 1/10	
		How will it look in expanded form?		
		Do we record 0 in the thousandth		

	column? Why?		
Rounding decimals	What number is represented?	Children are introduced to numbers with	
	How many decimal places does it have?	two decimal places and 1 develop their	
	When rounding to the nearest one	understanding of rounding to the nearest	
	decimal place, how many decimals will	whole number and to the nearest tenth.	
	the answer have?	Number lines support children to	
	Where would 3.25 appear on both	understand where numbers appear in	
	number lines?	relation to other numbers and are	
	What is the same and what is different	important to developing conceptual	
	about the two number lines?	understanding of rounding.	
Order and compare	What number is represented?	Children order and compare numbers with	
decimals	is greater/less than	up to three decimal 1 places. They use	
	because	place value counters to represent the	
	Explain how you know.	numbers they are comparing. Number	
	Can you build the number using place	lines support children to understand	
	value counters?	where numbers appear in relation to other	
		numbers.	
Understand	How many parts is the square split in	Children are introduced to 'per cent' for	
Percentages	to?	the first time and will 1 understand that	
	How many parts per hundred are	'per cent' relates to 'number of parts per	
	shaded/not shaded?	hundred'. They will explore this through	
	Can we represent this percentage	different representations which show	
	differently?	different parts of a hundred. Children will	
	Look at the bar model, how many parts	use 'number of parts per hundred'	
	is it split into?	alongside the % symbol.	
	If the bar is worth 100, what is each		
	part worth?		
	How would we say this as a		
	percentage?		
	In the table, what does the score		
	represent?		
	How many parts per hundred did		
	score?		

Percentages as	What do you notice about the	Children represent percentages as	
fractions and	percentage and the decimal?	fractions using the denominator 1 100 and	
decimals	What's the same?	make the connection to decimals and	
	What's different about percentages,	hundredths. Children will recognise	
	decimals and fractions?	percentages, decimals and fractions are	
	How can we record this proportion as a	different ways of expressing proportions.	
	fraction?		
	How can we turn it into a percentage?		
	Explain your method.		
Equivalent F.D.P	Show these decimals on the bead string.	Children recognise simple equivalent	
	What are they as a decimal?	fractions and represent them 1 as decimals	
	What are they as a fraction?	and percentages. Children then solve	
	Can you simplify the fraction?	problems which require knowing	
	How can we represent the fractions on	percentage and decimal equivalents of 1/2 1/4	
	a number line?	1/5 2/5 4/5 and those fractions with a	
	What are they equivalent to?	denominator of a multiple of 10 or 25	
	Which is closer to 100%, # \$ or 70%?		
	How do you know?		