Year 6 Maths SPRING medium Term plan

Converting Units:

NC Objectives:

Solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate.

Use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to 3 dp.

Convert between miles and kilometres.

Week	Small step	Key Questions	Notes and Guidance	Assessment
	Metric Measures	Which units measure length?	Children read, write and recognise all	
		Mass?	metric measures for length, mass and	
		Capacity?	capacity. They may need to be reminded	
		When would you use km instead of m?	the difference between capacity (the	
		When would you use mm instead of	amount an object can contain) and volume	
		cm?	(the amount actually in an object). They	
		Which is the most appropriate unit to	develop their estimation skills in context	
		use to measure the object?	and decide when it is appropriate to use	
		Explain your answer.	different metric units of measure.	
		Why do you think is not an		
		appropriate estimate?		
	Convert Metric	How could you work out what each	Children will use their skills of multiplying	
	measures	mark is worth on the scales?	and dividing by 10, 100 and 1,000 when	
		What do you think would be the most	converting between units of length, mass	
		efficient method for converting the	and capacity. Children will convert in both	
		units of time?	directions e.g. m to cm and cm to m. Using	
		What's the same and what's different	metre sticks and other scales will support	
		between 1.5 km and 1.500 km?	this step. They will need to understand the	
		Are the zeroes needed?	role of zero as a place holder when	
		Why or why not?	performing some calculations, as	
		What do you notice about the amounts	questions will involve varied numbers of	
		in the table?	decimal places.	
		Can you spot a pattern?		

	What's the same and what's different about km and kg?		
Calculate with Metric measure	What operation are you going to use and why? How could you use a bar model to help you understand the question? How many are there in a? How can we convert between and ?	Children use and apply their conversion skills to solve measurement problems in context. Teachers should model the use of pictorial representations, such as bar models, to represent the problem and help them decide which operation to use.	
Miles and Kilometres	Give an example of a length you would measure in miles or km. If we know 5 miles ≈ 8 km, how can we work out 15 miles converted to km? Can you think of a situation where you may need to convert between miles and kilometres?	Children need to know that 5 miles is approximately equal to 8 km. They should use this fact to find approximate conversions from miles to km and from km to miles. They should be taught the meaning of the symbol '≈' as "is approximately equal to".	
Imperial Measures	Put these in order of size: 1 cm, 1 mm, 1 inch, 1 foot, 1 metre. How do you know? When do we use imperial measures instead of metric measures? Why are metric measures easier to convert than imperial measures?	Children need to know and use the following facts: • 1 foot is equal to 12 inches • 1 pound is equal to 16 ounces • 1 stone is equal to 14 pounds • 1 gallon is equal to 8 pints • 1 inch is approximately 2.5 cm They should use these to perform related conversions, both within imperial measures and between imperial and metric.	

Area, Perimeter and Volume

NC Objectives:

- •Recognise that shapes with the same areas can have different perimeters and vice versa.
- Recognise when it is possible to use formulae for area and volume of shapes.
- Calculate the area of parallelograms and triangles.
- •Calculate, estimate and compare volume of cubes and cuboids using standard units, including cm3, m3 and extending to other units (mm3, km3)

Shapes- same area	What do we need to know in order to work out the area of a shape? Why is it useful to know your timestables when calculating area? Can you have a square with an area of 48 cm2? Why?	Children will find and draw rectilinear shapes that have the same area. Children will use their knowledge of factors to draw rectangles with different areas. They will make connections between side lengths and factors.	
	How can factors help us draw		
Area and Perimeter	rectangles with a specific area? What is the difference between the area and perimeter of a shape? How do we work out the area and perimeter of shapes? Can you show this as a formula? Can you have 2 rectangles with an area of 24 cm² but different perimeters?	Children should calculate area and perimeter of rectilinear shapes. They must have the conceptual understanding of the formula for area by linking this to counting squares. Writing and using the formulae for area and perimeter is a good opportunity to link back to the algebra block. Children explore that shapes with the same area can have the same or different perimeters.	
Area of a triangle (1)	How many whole squares can you see? How many part squares can you see? What could we do with the parts? What does estimate mean? Why is your answer to this question an estimate of the area? Revisit the idea that a square is a rectangle when generalising how to calculate the area of a triangle.	Children will use their previous knowledge of approximating and estimating to work out the area of different triangles by counting. Children will need to physically annotate to avoid repetition when counting the squares. Children will begin to see the link between the area of a triangle and the area of a rectangle or square.	
Area of a triangle (2)	What is the same/different about the rectangle and triangle? What is the relationship between the area of a rectangle and the area of a right-angled triangle? What is the formula for working out	Children use their knowledge of finding the area of a rectangle to find the area of a right-angled triangle. They see that a right-angled triangle with the same length and perpendicular height as a rectangle will have an area half the size. Using the link	

	the area of a rectangle or square?	between the area of a rectangle and a	
	How can you use this formula to work	triangle, children will learn and use the	
	·		
	out the area of a right angled triangle?	formula to calculate the area of a triangle.	
Area of a tria		Children will extend their knowledge of	
	mean?	working out the area of a right-angled	
	What do we mean by perpendicular	triangle to work out the area of any	
	height?	triangle. They use the formula, base ×	
	What formula can you use to calculate	perpendicular height ÷ 2 to calculate the	
	the area of a triangle?	area of a variety of triangles where	
	If there is more than one triangle	different side lengths are given and where	
	making up a shape, how can we use the	more than one triangle make up a shape.	
	formula to find the area of the whole		
	shape?		
	How do we know which length tells us		
	the perpendicular height of the		
	triangle?		
Area of	Describe a parallelogram.	Children use their knowledge of finding	
parallelogran	n (1) What do you notice about the area of a	the area of a rectangle to find the area of a	
	rectangle and a parallelogram?	parallelogram. Children investigate the link	
	What formula can you use to work out	between the area of a rectangle and	
	the area of a parallelogram?	parallelogram by cutting a parallelogram	
		so that it can be rearranged into a	
		rectangle. This will help them understand	
		why the formula to find the area of	
		parallelograms works.	
Volume- cour	nting What's the same and what's different	Children should understand that volume is	
cubes	between area and volume?	the space occupied by a 3-D object.	
	Can you explain how you worked out	Children will start by counting cubic units	
	the volume?	(1 cm ³) to find the volume of 3D shapes.	
	What did you visualise?	They will then use cubes to build their own	
	What units of measure could we use for	models and describe the volume of the	
	volume? (Explore cm³, m³, mm³ etc.)	models they make.	
Volume of a	cuboid Can you identify the length, width and	Children make the link between counting	

	hatala afilia a hatala	a base of the force to the control of	T
	height of the cuboid?	cubes and the formula $(l \times w \times h)$ for	
	If the length of a cuboid is 5 cm and the	calculating the volume of cuboids. They	
	volume is 100 cm³, what could the	realise that the formula is the same as	
	width and height of the cuboid be?	calculating the area of the base and	
	What knowledge can I use to help me	multiplying this by the height.	
	calculate the missing lengths?		
	<mark>Rat</mark>	<mark>io</mark>	
<mark>IC Objectives:</mark>			
Solve problems involving the rela	ative sizes of two quantities where missing	values can be found by using integer multipl	ication and division facts.
Solve problems involving similar	shapes where the scale factor is known or	can be found.	
Solve problems involving unequa	ll sharing and grouping using knowledge of	f fractions and multiples.	
Using Ratio	How would your sentences change if	Children will understand that a ratio shows	
language	there were 2 more blue flowers?	the relationship between two values and	
	How would your sentences change if	can describe how one is related to	
	there were 10 more pink flowers?	another. They will start by making simple	
	Can you write a "For every" sentence	comparisons between two different	
	for the number of boys and girls in your	quantities. For example, they may	
	class?	compare the number of boys to girls in the	
		class and write statements such as, "For	
		every one girl, there are two boys".	
Ratio and Fractions	How many counters are there	Children often think a ratio 1 : 2 is the	
	altogether?	same as a fraction of 1 2 In this step, they	
	How does this help you work out the	use objects and diagrams to compare	
	fraction?	ratios and fractions.	
	What does the denominator of the		
	fraction tell you?		
	How can a bar model help you to show		
	the mints and chocolates?		
Introducing the	What does the : symbol mean in the	Children are introduced to the colon	
Ratio symbol	context of ratio?	notation as the ratio symbol, and continue	
natio syllibol	Why is the order of the numbers	to link this with the language 'for every,	
	important when we write ratios?	there are' They need to read ratios e.g. 3	
	limportant when we write ratios?	there are They need to read ratios e.g. 3	

: 5 as "three to five". Children understand

How do we write a ratio that compares

	three quantities?	that the notation relates to the order of	
	How do we say the ratio "3:7"?	parts. For example, 'For every 3 bananas	
	Thow do we say the ratio 3 · 7 ;	there are 2 apples would be the same as 3	
		: 2 and for every 2 apples there are 3	
		bananas would be the same as 2:3	
Calculating Ratio	How can we represent this ratio using a	Children build on their knowledge of ratios	
Calculating Ratio	How can we represent this ratio using a bar model?		
		and begin to calculate ratios. They answer	
	What does each part represent?	worded questions in the form of 'for	
	What will each part be worth?	every there are' and need to be able to	
	How many parts are there altogether?	find both a part and a whole. They should	
	What is each part worth?	be encouraged to draw bar models to	
	If we know what one part is worth, can	represent their problems, and clearly label	
	we calculate the other parts?	the information they have been given and	
		what they want to calculate.	
Using Scale Factors	What does enlargement mean?	In this step, children enlarge shapes to	
	What does scale factor mean?	make them 2 or 3 times as big etc. They	
	Why do we have to double/triple all the	need to be introduced to the term "scale	
	sides of each shape?	factor" as the name for this process.	
	Have the angles changed size?	Children should be able to draw 2-D	
		shapes on a grid to a given scale factor and	
		be able to use vocabulary, such as, "Shape	
		A is three times as big as shape B".	
Calculating Scale	What does similar mean?	Children find scale factors when given	
factors	What do you notice about the	similar shapes. They need to be taught	
	length/width of each shape?	that 'similar' in mathematics means that	
	How would drawing the rectangles help	one shape is an exact enlargement of the	
	you?	other, not just they have some common	
	How much larger/smaller is shape A	properties. Children use multiplication and	
	compared to shape B?	division facts to calculate missing	
	What does a scale factor of 2 mean?	information and scale factors.	
	Can you have a scale factor of 2.5?		
Ratio and	How does this problem relate to ratio?	Children will apply the skills they have	
proportion problems	Can we represent this ratio using a bar	learnt in the previous steps to a wide	

model?	range of problems in different contexts.	
What does each part represent?	They may need support to see that	
What is the whole?	different situations are in fact alternative	
What is the same about the ratios?	uses of ratio. Bar models will again provide	
What is different about them?	valuable pictorial support	

Angles:

NC Objectives:

- •Draw 2-D shapes using given dimensions and angles.
- •Compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals and regular polygons.

•Recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.

Measure with a	Can we name and describe the 4	This step revisits measuring angles using a	
protractor	different types of angles? (right angle,	protractor from Year 5 Children recap how	
	obtuse, acute, reflex)	to line up the protractor accurately, and	
	What unit do we use to measure	identify which side of the scale to read.	
	angles?	They link this to their understanding of	
	Does it matter which side of the	angle sizes. Children read the	
	protractor I use?	measurement and practise measuring	
	What mistakes could we make when	angles given in different orientations.	
	measuring with a protractor?	Angles are also related to compass points.	
	How would I measure a reflex angle?		
	Look at a compass, what angles can we		
	identify using the compass?		
Introduce angles	If there are 90 degrees in one right	Children build on their understanding of	
	angle, how many are there in two?	degrees in a right angle and make the	
	What about three?	connection that there are two right angles	
	How many degrees are there in a	on a straight line and four right angles	
	quarter/half turn?	around a point. Children should make links	
	Between which two compass points can	to whole, quarter, half and three quarter	
	you see a right angle/half turn/three	turns and apply this in different contexts	
	quarter turn?	such as time and on a compass.	
Calculate angles	What do we know about a and b?	Children apply their understanding of	
	How do we know this?	angles in a right angle, angles on a straight	

		Which angle fact might you need to use	line and angles around a point to calculate	
		when answering this question?	missing angles. They should also recognise	
		Which angles are already given?	right angle notation and identify these on	
		How can we use this to calculate	a diagram. Children then use this	
		unknown angles?	information to help them calculate	
			unknown angles.	
	ertically opposite	What sentences can we write about	Children recognise that vertically opposite	
aı	ngles	vertically opposite angles in relation to	angles share a vertex. They realise that	
		other angles?	they are equal and use practical examples	
		How can we find the missing angle?	to show this. They continue to apply their	
		Is there more than one way to find this	understanding of angles on a straight line	
		angle?	and around a point to calculate missing	
			angles.	
A	ingles in a triangle	What's the same and what's different	Children practically explore interior angles	
		about the four types of triangle?	of a triangle and understand that the	
		What do the three interior angles add	angles will add up to 180 degrees. Children	
		up to?	should apply their understanding that	
		Would this work for all triangles?	angles at a point on a straight line add up	
		Does the type of triangle change	to 180 degrees.	
		anything?		
		Does the size of the triangle matter?		
	ingles in a triangle –	How can we identify sides which are the	Children are introduced to hatch marks for	
sp	pecial cases	same length on a triangle?	equal lengths. They concentrate on angles	
		How can we use the use the hatch	in right-angled triangles and isosceles	
		marks to identify the equal angles?	triangles. Children use their understanding	
		If you know one angle in an isosceles	of the properties of triangles to reason	
		triangle, what else do you know?	about angles.	
		Can you have an isosceles right-angled		
	malaa in a tuisusels	triangle?	Children huild on major learning to mail	
	ingles in a triangle-	Is it sensible to estimate the angles	Children build on prior learning to make	
m	nissing angles	before calculating them?	links and recognise key features of specific	
		Are the triangles drawn accurately?	types of triangle. They think about using	
		Can you identify the type of triangle?	this information to solve missing angle	

	11 91111 1 1 1 1 1		
	How will this help you calculate the	problems. They should also use their	
	missing angle?	knowledge of angles on a straight line,	
	Which angle can you work out first?	angles around a point and vertically	
	Why?	opposite angles.	
	What else can you work out?		
Angles in special	Is a rectangle a parallelogram?	Children use their knowledge of properties	
quadrilaterals	Is a parallelogram a rectangle?	of shape to explore interior angles in a	
	What do you notice about the opposite	parallelogram, rhombus, trapezium etc.	
	angles in a parallelogram?	They need to learn that angles in any	
	Is a square a rhombus?	quadrilateral add up to 360°. If they are	
	Is a rhombus a square?	investigating by measuring, there may be	
	What do you notice about the opposite	accuracy errors which will be a good	
	angles in a rhombus?	discussion point. Children need to have a	
	What is the difference between a	secure understanding of the relationship	
	trapezium and an isosceles trapezium?	between a rectangle, a parallelogram, a	
	If you know 3 of the interior angles,	square and a rhombus.	
	how could you work out the fourth	·	
	angle?		
Angles in regular	What is a regular polygon?	Children use their knowledge of properties	
polygons	What is an irregular polygon?	of shape to explore interior angles in	
. 76	What is the sum of interior angles of a	polygons. Children explore how they can	
	triangle?	partition shapes into triangles from a	
	How can we use this to work out the	single vertex to work out the sum of the	
	interior angles of polygons?	angles in polygons. They use their	
	Can we spot a pattern in the table?	knowledge of angles on a straight line	
	What predictions can we make?	summing to 180° to calculate exterior	
	P. 3.3.3.	angles.	
Draw shapes	What do you know about the shapes	Children begin by drawing shapes	
accurately	which will help you draw them?	accurately on different grids such as	
,	How can we ensure our measurements	squared and dotted paper. They then	
	are accurate?	move on to using a protractor on plain	
	How would you draw a triangle on a	paper. Children use their knowledge of	
	plain piece of paper using a protractor?	properties of shapes and angles, as well as	
 1	I pram prese or paper asing a protractor:	p. spercies of shapes and angles, as well as	

		converting between different units of	
		measure	
Draw nets of 3d	Looking at the faces of a three-	Children use their knowledge of 2-D and 3-	
shapes	dimensional shape, what two	D shapes to identify three-dimensional	
	dimensional shapes can you see?	shapes from their nets. Children need to	
	What is a net?	recognise that a net is a two-dimensional	
	What shape will this net make?	figure that can be folded to create a three-	
	How do you know?	dimensional shape. They use measuring	
	What shape won't it make?	tools and conventional markings to draw	
	If you make this net, what would	nets of shapes accurately.	
	happen if you were not accurate with		
	your measuring?		